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Abstract

Increasingly large-scale neuroimaging datasets facilitate data-driven domain knowledge modeling.
Such modeling can potentially enhance the diagnosis of neurological diseases by providing
non-invasive and reliable biomarkers from advanced imaging tools. Deep learning has shown
promising progress in various neuroimage analysis tasks. However, its deployment in clinics and
laboratories remains challenging due to a combination of labeling scarcity, missing data, and
domain shifts between image datasets, forming a high adoption barrier in real-world settings.
This dissertation addresses these bottlenecks by developing novel deep-learning methods that
effectively and efficiently process neuroimages, acknowledge the imperfection of data, and enable
the models to adapt to unseen domains. The contributions of this dissertation are categorized
into three neuroimage analysis tasks: (a) image segmentation, (b) image synthesis, and (c)
radiomics analysis.

For image segmentation, we develop effective and efficient approaches for brain structure
segmentation and validate them in multi-center settings. Firstly, to segment white matter
hyperintensities in FLAIR and T1 images, we introduce an ensemble of multiple independent
networks to improve lesion detection. This algorithm was independently evaluated on unseen
multi-center datasets and won the 1st place in a grand challenge at MICCAI 2017. Secondly,
we propose an ensemble of networks learned from multiple views for the segmentation of the
claustrum, a deep gray matter structure. We validate it in a multi-center dataset and observe
that it achieves excellent segmentation accuracy compared to human annotators. Thirdly, we
explore deep transfer learning to significantly reduce annotation effort in a new image domain.
We transfer the knowledge learned from one modality to another for the same segmentation task.

For image synthesis, firstly, we develop a unified generative adversarial networks (GANs)
method for cross-modality synthesis and validate it in a clinical setting, where we observe that
the synthetic images improve the diagnosis of multiple sclerosis in brains. It demonstrates that
we can augment image information from almost-invisible to visible. Secondly, we enhance the
developed GANs approach with two new properties: lesion-specific and uncertainty-aware. We
propose an improved loss function to focus on the lesion region and validate the new loss in a
multi-center setting. Among all centers, we consistently demonstrate that synthetic images can
improve diagnosis compared to traditional FLAIR images. Importantly, we show that uncertainty
maps can detect false positives in synthetic images, thus improving the trustworthiness of the
established method. Third, we explore an efficient 3D unsupervised domain adaptation method
for image synthesis to address the domain shift between source and target domains.

For radiomics analysis, we introduce contrastive learning for learning 3D data-driven radiomics
in a self-supervised fashion and address the imbalance issue in the self-supervised setting. More
importantly, we demonstrate that the new radiomics features complement existing ones.

The recent progress of deep learning for neuroimage analysis is still largely confined to highly
controlled settings. The work in this dissertation shows that: (1) leveraging data efficiently
under limited annotation or without annotations can benefit existing analysis workflows, (2)
augmenting image information can improve clinical outcomes, and (3) handling domain shifts
might be the key to transforming research achievements in image computing into clinical practice.
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A graphical representation of this dissertation’s contributions to the field of neuroimaging.
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Zusammenfassung

Die Sammlung von immer umfangreicheren Neuroimaging-Daten bietet die Möglichkeit zur
datengesteuerten Modellierung von Fachwissen. Eine solche Modellierung kann möglicherweise
die Diagnose neurologischer Erkrankungen verbessern, indem sie nicht-invasive und zuverlässige
Biomarker aus MR-Bildgebungsinstrumenten liefert. Auf Deep Learning basierende Methoden
haben vielversprechende Fortschritte bei der Analyse von Neurobilddaten gezeigt. Ihr Ein-
satz in Kliniken und Labors bleibt jedoch eine Herausforderung. Eine Kombination aus der
Knappheit an Beschriftungen, fehlenden Daten und der Verschiebung zwischen verschiedenen
Bilddatensätzen stellt eine hohe Hürde für den Einsatz in der Praxis dar. Diese Dissertation
zielt darauf ab, diese Engpässe zu beseitigen, indem neuartige Deep-Learning-Methoden en-
twickelt werden, die Neurobilddaten effektiv und effizient verarbeiten, die Unvollkommenheit
von Datensätzen berücksichtigen und die Modelle dazu bringen, sich an unbekannte Domänen
anzupassen. Die Beiträge dieser Dissertation gliedern sich in drei Aufgaben der Neurobildanalyse:
(a) Bildsegmentierung, (b) Bildsynthese und (c) Radiomics-Analyse.

Für die Bildsegmentierung entwickeln wir effektive und effiziente Ansätze für die Segmentierung
von Gehirnstrukturen und validieren sie in multizentrischen Einstellungen. Erstens führen wir
für die Segmentierung von Hyperintensitäten der weißen Substanz in FLAIR- und T1-Bildern
ein Ensemble aus mehreren unabhängigen Netzwerken ein, um die Erkennung von Läsionen zu
verbessern. Der Algorithmus wurde unabhängig auf ungesehenen multizentrischen Datensätzen
evaluiert und gewann den 1st Platz in einer großen Herausforderung bei MICCAI 2017. Zweitens
schlagen wir ein Ensemble von Netzwerken gelernt aus mehreren Ansichten für die Segmentierung
von Claustrum (eine tiefe graue Materie Struktur). Wir validieren es in einem multizentrischen
Datensatz und stellen fest, dass es im Vergleich zu menschlichen Annotatoren eine ausgezeichnete
Segmentierungsgenauigkeit erreicht. Drittens erforschen wir deep transfer learning, um den
Annotationsaufwand in einem neuen Bildbereich erheblich zu reduzieren. Wir übertragen das
von einer Modalität gelernte Wissen auf eine andere für dieselbe Segmentierungsaufgabe.

Für die Bildsynthese entwickeln wir zunächst eine unified generative adversarial networks
(GANs) Methode zur Durchführung einer modalitätsübergreifenden Synthese und validieren sie
in einem klinischen Umfeld, in dem wir beobachten, dass die synthetischen Bilder die Diagnose
von Multipler Sklerose in Gehirnen verbessern. Es zeigt sich, dass wir die Bildinformationen
von fast unsichtbar zu sichtbar erweitern. Zweitens erweitern wir den entwickelten GAN-
Ansatz um zwei neue Eigenschaften: lesionsspezifisch und uncertainty-aware. Wir schlagen eine
verbesserte Verlustfunktion vor, die sich auf die Läsionsregion konzentriert, und validieren den
neuen Verlust in einer multizentrischen Umgebung. In allen Zentren konnten wir durchweg
zeigen, dass synthetische Bilder die Diagnose im Vergleich zu herkömmlichen FLAIR-Bildern
verbessern können. Wichtig ist, dass wir zeigen, dass Unsicherheitskarten falsch-positive Läsionen
in synthetischen Bildern erkennen können und somit die Vertrauenswürdigkeit der etablierten
Methode verbessern. Drittens erforschen wir eine effiziente 3D unsupervised domain adaptation-
Methode für die Bildsynthese, um die Domänenverschiebung zwischen Quell- und Zieldomänen
anzugehen.

Für die Radiomics-Analyse führen wir das kontrastive Lernen ein, um datengesteuerte 3D-
Radiomics auf selbstüberwachte Weise zu erlernen und das Problem des Ungleichgewichts in
der selbstüberwachten Umgebung zu lösen. Noch wichtiger ist, dass wir zeigen, dass die neuen
Radiomics-Merkmale die bestehenden ergänzen.

Die jüngsten Fortschritte beim Deep Learning für die Neurobildanalyse beschränken sich noch
weitgehend auf stark kontrollierte Umgebungen. Die in dieser Arbeit vorgestellte Arbeit zeigt, dass
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(1) die effiziente Nutzung von Daten (mit begrenzten Annotationen oder ohne Annotationen) und
die Anreicherung von Bildinformationen die klinischen Ergebnisse verbessern können, und (2) der
Umgang mit Domänenverschiebungen der Schlüssel zur Übertragung von Forschungsergebnissen
in der Bildverarbeitung in die reale klinische Praxis sein könnte.
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Wiestler. “Deep-learning generated synthetic double inversion recovery images improve
multiple sclerosis lesion detection”. In: Investigative Radiology 55.5 (2020), pp. 318–
323.

• T. Finck*, H. Li*, S. Schlaeger, L. Grundl, N. Sollmann, B. Bender, E. Bürkle, C. Zimmer,
J. Kirschke, B. Menze, et al. “Uncertainty-aware and lesion-specific image synthesis
in multiple sclerosis magnetic resonance imaging: a multicentric validation study”. In:
Frontiers in Neuroscience 16 (2022).

Work on radiomics analysis

• H. Li, F.-F. Xue, K. Chaitanya, S. Luo, I. Ezhov, B. Wiestler, J. Zhang, and B. Menze.
“Imbalance-aware self-supervised learning for 3d radiomic representations”. In: International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).
Springer. 2021, pp. 36–46.

11



Besides the work listed above, further first-author publications on image analysis are listed
below but are not included in this dissertation. These works extend the application domains
and enhance the methodology.

Further own work on image analysis

◦ H. Li, R. G. Prasad, A. Sekuboyina, C. Niu, S. Bai, W. Hemmert, and B. Menze. “Micro-
Ct synthesis and Inner Ear Super Resolution via Generative Adversarial Networks and
Bayesian Inference”. In: 2021 IEEE 18th International Symposium on Biomedical Imaging
(ISBI). IEEE. 2021, pp. 1500–1504.

◦ H. Li, S. Gopal, A. Sekuboyina, J. Zhang, C. Niu, C. Pirkl, J. Kirschke, B. Wiestler, and
B. Menze. “Unpaired MR Image Homogenisation by Disentangled Representations and
Its Uncertainty”. In: Uncertainty for Safe Utilization of Machine Learning in Medical
Imaging (UNSURE), and Perinatal Imaging, Placental and Preterm Image Analysis.
Springer, 2021, pp. 44–53.

◦ H. Li, M. Reichert, K. Lin, N. Tselousov, R. Braren, D. Fu, R. Schmid, J. Li, B. Menze,
and K. Shi. “Differential diagnosis for pancreatic cysts in CT scans using densely-connected
convolutional networks”. In: 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE. 2019, pp. 2095–2098.

◦ H. Li, J. Zhang, and B. Menze. “Generalisable cardiac structure segmentation via
attentional and stacked image adaptation”. In: International Workshop on Statistical
Atlases and Computational Models of the Heart (STACOM). Springer. 2020, pp. 297–304.

◦ X. Dong*, H. Li*, Z. Jiang, T. Grünleitner, İ. Güler, J. Dong, K. Wang, M. H. Köhler,
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1 Introduction

Neuroimage analysis has made fundamental contributions to the study of neuroscience [1, 2],
image-guided surgery [3, 4], and neurological diagnostic tasks [5, 6]. Various imaging techniques
have been developed to generate visual contrast of brain structures, such as multi-contrast
magnetic resonance imaging (MRI) [7, 8], positron emission tomography [9, 10], and computed
tomography [11, 12]. Particularly, MRI provides high-resolution contrast for soft brain tissues.
For example, T1-weighted sequences can distinctly differentiate the gray and white matter of the
brain [13] and reflect the degree of brain atrophy. In practice, multi-contrast neuroimages offer
complementary structural information, which could be leveraged to identify sub-structures, e.g.,
in multiple sclerosis [14, 15] and brain tumor cases [16, 17].

However, interpreting multi-contrast neuroimages is a complex task that necessitates domain
knowledge and is predominantly performed by neuro-radiologists. The benefits of applying
machine learning, particularly deep learning, in neuroimage analysis are threefold: (1) reducing
expert effort, thus accelerating neuroimage analysis from small-scale to population-based studies,
(2) augmenting image information from hardly-visible to visible, thereby improving clinical
diagnosis, and (3) discovering new meaningful features or patterns from large-scale datasets,
which can be either labeled or unlabeled.

Deep learning [18] has become ubiquitous in neuroimage analysis. With the increase in neu-
roimaging data volume and advances in hardware, these data-driven ‘black-box’ algorithms have
enabled substantial leaps in performance across a wide array of neuroimage analysis applica-
tions [19, 20]. However, deploying existing deep learning models in clinics and laboratories remains
a challenge. A combination of labeling scarcity, missing data, and domain shift [21] between
image datasets forms a high barrier to adoption and results in underwhelming performance in
real-world settings. How deep learning can be efficiently adopted, e.g., in scenarios with limited
or no annotations available, and how techniques can be adapted to real-world applications under
domain shifts, are both technically attractive and clinically relevant. Notably, such developed
techniques should be carefully evaluated and interpreted in clinical settings.

This dissertation focuses on three advanced neuroimage analysis tasks: image segmentation,
image synthesis, and radiomics analysis. It develops and discusses several machine learning
techniques in the context of neuroimage analysis, including deep transfer learning, generative
modeling, domain adaptation, and contrastive learning. Specifically, it addresses the following
research questions to advance neuroimage analysis:

• How to develop effective and efficient deep learning approaches for brain structure segmen-
tation in MR images? How can the prior knowledge learned from one task in one image
domain be transferred to similar tasks in different image domains?

• Can one synthesize a missing contrast image (i.e., from multiple source image domains to a
target image domain) in multi-contrast MRI? If yes, how realistic and useful are synthetic
data in clinical practice?

• How to improve pathology-specific synthesis quality and the robustness of generative
adversarial networks in the presence of domain shifts?

• Can self-supervised learning-based representation serve as a new kind of radiomics? If yes,
is there any potential imbalance issue in the learned representation?
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1.1 Organization

This publication-based dissertation is structured as follows:
Chapter 1 introduces three neuroimage analysis tasks: (a) image segmentation, (b) image

synthesis, and (c) radiomics analysis, along with existing works and challenges. It concludes with
a summary of the dissertation’s contributions. Chapter 2 provides an overview of relevant
terminology and key concepts used throughout this manuscript.

Chapter 3 to 7 are composed of eight publications in their original forms. They have been
published as peer-reviewed journals and conference proceedings and are therefore self-contained.
Each of these chapters begins with a summary that includes the full citation of the original
publication, a short synopsis introducing the content of the corresponding publication, and the
author’s contributions.

Chapter 8 offers a discussion and conclusions over the presented material and suggests directions
for future work.
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1.2 Medical image segmentation

1.2 Medical image segmentation

1.2.1 Motivation and challenges

Image segmentation is one of the main challenges in modern medical image analysis and the
base of many quantitative image analysis tasks. It aims to label an image’s pixels (or voxels)
into multiple semantic regions for localization and quantification purposes. The outcome of
semantic image segmentation can be a set of anatomical labels or contours that highlight regions
of interest. Since manual segmentation of target structures is labor-intensive and requires expert
knowledge [22], automated image segmentation has become one of the main research topics
in medical imaging. It benefits many medical applications such as computer-aided diagnosis,
therapy planning, lesion detection, and disease progression [23, 16, 24, 25, 26, 27]. Although
various segmentation approaches have been developed and reported, the task remains challenging
at diverse clinical and technical settings. It seems that there is no general solution given the
following obstacles:

• Labeling uncertainty: high inter-rater variability exists for many segmentation tasks,
especially the segmentation of small structures (e.g., multiple sclerosis lesions). Such
uncertainty is caused by two main sources: (a) poor image quality, such as low contrast
between structures and the noise that corrupts image structure, and (b) different clinical
opinions on the same structure.

• Inhomogeneity of individuals: Anatomical structures are often inhomogeneous among
healthy subjects and patients, concerning the shape of organs and the texture of pathology.
It may degrade the segmentation performance since the training set can normally only
cover a part of underlying distributions.

• Domain shift in image acquisitions: practically, collecting sufficient training data with the
same acquisition setting as the future ones during the inference stage is impossible. In MR
imaging, such a domain gap relates to bias field, image resolution, and image contrast

• Partial and missing annotations: existing segmentation pipelines only apply for offline
data (with fixed target structures). For new applications, e.g., one wishes to segment new
anatomical structures, existing annotations cannot be straightforwardly used for training
or updating new models. Furthermore, different data subsets may have varied partial
annotations.

1.2.2 State-of-the-art methods

Previous classical approaches should be appreciated, such as rule-based [28], statistical inference
based [23, 29, 23, 30], level set based [31, 32] and atlas-based [33, 34] methods. Due to topic
relevance, only two groups of recent methods are reviewed in detail: (1) machine-learning-based
segmentation with hand-crafted features, and (2) deep-learning-based segmentation.

Hand-crafted features and machine-learning-based segmentation

• Unsupervised methods: clustering methods include k-means [35] and fuzzy c-means cluster-
ing [36] with segmentation refinement by deformable models [37] are often used to group
the pixels into multiple classes. They divide the features of data into two or more clusters
and assign the identities to each data point (i.e., pixels). The k-means method generates
results corresponding to hard segmentation while fuzzy c-means produces soft segmentation
that can be transformed into hard segmentation by allowing the pixels to have cluster
identity.
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• Supervised methods: in this group, segmentation is formulated as an optimization procedure
to learn a decision boundary that best separates binary classes. They leverage hand-crafted
features including intensity [38], texture [39, 40], and shape [41] features together with
machine learning techniques such as support vector machine [42], random forest [43],
vantage point forest [44], dictionary learning [45] to classify each pixel to a semantic label.
However, these methods rely on careful pre-processing, and feature engineering and are
commonly multi-stage.

Deep-learning based segmentation

• Architectures: deep neural architectures, also called ‘backbone’, containing most parameters,
is optimized to learn a mapping from image space to label space. Kamnitsas et al. [46]
is the first to develop a 3D encoder-like convolutional neural network for automated
brain lesion segmentation in MR images. Although it improved segmentation accuracy
compared to traditional machine learning approaches, the computation of the inference
stage is relatively heavy because it relies on sliding windows to obtain the labels of all
voxels in a volume. Fully convolutional network (FCN) [47] and U-Net, which are encoder-
decoder-like architectures, are proposed to perform pixels-to-pixels dense prediction. Such
fully convolutional architectures can take arbitrary image sizes as the input and generate
the corresponding segmentation maps at once. Based on U-Net, many variants, such as
U-Net++ [48], are proposed to improve the effectiveness of representation learning or
tailor it for specific application requirements. Neural architecture search is an emerging
direction for optimizing architecture itself [49]. An existing framework named nn-UNet is
rule-based with a few searching parameters (e.g., input size and network complexity). It is
well validated on diverse imaging datasets and proven to be practically effective [50].

• Loss functions: the role of a loss function is to evaluate how well the predicted segmentation
matches the reference (or ground truth). Various loss functions have been proposed
for medical image segmentation. Cross entropy (CE) is derived from Kullback-Leibler
divergence, which is a measure of dissimilarity between two distributions. Focal loss [51]
modifies the standard CE to handle extreme foreground-background imbalance issues. Dice
loss [52] can directly optimize a Dice coefficient and handle class imbalance issues. Tversky
loss [53] extends Dice loss and emphasizes reducing false negatives. Distance-based loss
[54] is orthogonal to the above ones and aims to minimize the distance metric between the
prediction and the reference. Another type of loss function is feature-based instead of pixel-
wise. Recently, a perceptual loss has been shown to be useful in image segmentation [55].
Considering the complementary properties of different loss functions, one could combine
multiple losses for specific segmentation tasks. For example, a weighted sum between Dice
and distance-based losses can improve the segmentation of boundary pixels [54].

• Domain adaptation and generalization: how much data for a segmentation network to learn
and perform well on unseen distribution is related to the concept of domain adaptation.
Given an unseen target domain normally different from the source domain where the
model is trained, adapting deep neural networks can be partially mitigated with techniques
such as transfer learning [56, 57]. It uses small labeled datasets from the target domain
to fine-tune the segmentation model trained on the source domain. However, in this
scenario, annotations from the target domain are needed. Instead of using supervised
learning, another way to perform adaptation is unsupervised, i.e., using only images and
without using labels from the target domain. Kamnitsas et al. [58] is the first to develop
unsupervised domain adaptation techniques for brain lesion segmentation using adversarial
training. In a more practical setting, Karani et al. [59] proposes test-time adaptation for
medical image segmentation where only one data sample is used during the adaptation
process. Cross-modality adaptation [60, 61, 62] is a very challenging problem given a
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large domain gap between the source and the target, e.g., from CT to MRI, although it is
debatable if this setting is clinically relevant. Domain adaptation methods discussed above
may not always be practical as they rely on training data from the target domain and a fine-
tuning stage, hindering their deployment in clinical practice. Domain generalization aims
to improve the robustness of out-of-distribution data. In particular, single-source domain
generalization [63, 64] tacks with a practical scenario in which the model is optimized on
data from only one source domain.

• Pre-training: Instead of training the model from scratch, pre-training the neural architecture
is proven to improve the effectiveness of representations. Unlike transfer learning or domain
adaptation discussed above, pre-training allows the model to explore the training set’s
data structures without additional supervision. Random initialization or initialization with
specific distributions [65, 66, 67] is proven to improve the training of neural networks.
Pre-training with pre-text tasks is a self-supervised approach to initialize the weights and
obtain a representation. Zhou et al. [68] systematically demonstrate that pre-training
on medical data with self-supervision consistently outperforms pre-training on ImageNet
[69]. Contrastive learning-based pre-training is another effective self-supervised method by
learning invariance from data augmentations. Chaitany et al. [70] propose a multi-scale
contrastive learning loss for 3D medical data and demonstrate its effectiveness for medical
image segmentation tasks.
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1.3 Medical image synthesis

1.3.1 Multi-contrast MRI

Multi-contrast MR imaging enables neuro-anatomies to be imaged under different contrasts
by manipulating pulse MR sequences [71]. Hence, neuroimages acquired from several distinct
contrasts can help better distinguish tissues and enhance diagnostic information than single
contrast alone. For example, gray and white matter can be better visually separated in T1-
weighted images, whereas white matter hyperintensities can be well detected in FLAIR images
[72]. The limitations of multi-contrast acquisition are its long scan time and excessive artifacts
caused by motion or unexpected signal [73]. Therefore, neuroimage synthesis of missing or
corrupted contrasts from other high-quality contrasts is promising to improve the clinical utility
of multi-contrast MRI.

1.3.2 Prior works

Prior image synthesis approaches for multi-contrast MRI can be categorized into two main
streams: one-to-one and many-to-one methods.

• One-to-one synthesis: In one-to-one synthesis, the objective is to generate a subject’s image
in a target contrast from the same subject’s image in a source contrast. Early research
formulated one-to-one synthesis as a sparse dictionary learning problem [74, 75] where
patch-based dictionaries are formed from a set of co-registered source atlas and target atlas.
Each patch in the source is represented as a sparse linear combination of dictionary atoms
of the source atlas, and this combination is then used to synthesize a target contrast image
from the target atlas. To improve the synthesis quality, patch-based non-linear regression
with random forests [76] has been used for the source-to-target mapping. To overcome
the limitation of patch-based approaches, a deep convolutional neural network (CNN)
was proposed to process the entire 2D slices [77]. Recent approaches further leveraged
adversarial training and additional feature-based supervision to better capture the local
details in the target domain [78, 79].

• Many-to-one synthesis: when several source contrasts are available, to better leverage
multiple sources is to perform many-to-one synthesis. It aims to generate one subject’s
image in the target contrast from several source images in different contrasts. One popular
approach is to learn a non-linear regression model using random forests [80, 81]. Random
forests fit a regression model in the feature space (e.g., texture feature) to estimate the
intensities of the target contrast given multiple source contrasts. Similar to one-to-one
methods, CNN has been developed for many-to-one synthesis [82, 83], and recent works
have employed an adversarial loss to improve the image quality [84, 85].

In general, one-to-one synthesis aims to generate the target image from the feature representa-
tion of a given source image. Since it is optimized for a single input contrast, such a mapping
can be effectively learned when the source and target contrasts are highly correlated, and it
might limit synthesis quality when two contrasts are weakly linked. For example, beyond the
multi-contrast MRI domain, CT and MRI are highly complementary imaging tools to visualize
hard and soft tissues, respectively. Thus, a correct mapping from CT to MRI might be challenging
to learn as the contrast of soft tissues is not well presented in CT images. On the other hand,
many-to-one synthesis attempts to recover the target image from a shared representation of
multiple sources. It naturally manifests enhanced diagnostic information that is shared across
distinct source contrasts, even when this information is weakly shown in individual contrasts.
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1.4 Radiomics analysis

1.4.1 Definition and pipeline

In the cancer field, simple measurements of tumor (e.g., tumor size [86]) do not reflect the
morphological complexity or behavior [86]. They do not cover the range of quantitative features
such as edge, texture, or shape. Hence, radiomics refers to the high-throughput extraction and
analysis of advanced quantitative features from radiological images, such as CT, PET, and MRI.
Such profound analysis and feature mining can uncover predictive or prognostic correlations
between images and clinical outcomes.

The radiomics pipeline can be divided into five standard steps with definable inputs and
outputs: (a) image acquisition, (b) image segmentation and rendering, (c) feature extraction and
quantification, (d) data sharing, and (e) downstream task analyses. Notably, there are variations
and challenges from any of these individual processes. For example, different image acquisition
settings might produce different sets of features for the same region of interest. Thus, after
optimization, one existing challenge is to stabilize the entire process [87]. We concentrate on
radiomic features and review them in detail in the following.

1.4.2 Existing radiomic features

Once a region of interest (e.g., lesion) is defined, we can extract quantitative image features
which can be grouped into two categories:

• Rule-based features: these features describe characteristics of the intensity histogram, shape,
texture, as well as spatial descriptors of ROI location and relations with the surrounding
structures. Tumor intensity histogram-based features reduce the data dimension from a
volume into a single histogram. It describes the fractional volume for a selected structure
given a range of voxel values [88, 89]. Shape features that describe the geometric shape can
be extracted from the 3D surface of the rendered volumes [90], e.g., tumor compactness and
sphericity [91]. Texture features, including co-occurrence features and local descriptors, are
widely applied in medical classification tasks [92, 93, 94, 95]. The basis of the co-occurrence
features lies in the second-order joint conditional probability density function of the given
texture. The elements of the co-occurrence matrix for the ROI represent the number of
times that two intensity levels occur in two voxels separated by the distance in the direction.
Subsequently, features can be extracted from this conditional probability density function,
e.g., describing contrast, correlation, cluster prominence, cluster shade, cluster tendency,
maximum probability, dissimilarity, energy, homogeneity, a sum of squares, sum average or
sum variance, etc. Local descriptors such as local binary patterns [96] and Gabor filters
[97] are used, along with feature coding methods to enhance the feature representation,
such as a bag of words [98], and Fisher vector [99].

• Data-driven features: Instead of extracting pre-defined rule-based features, deep learning
methods can uncover high-level abstract information from raw imaging data as the param-
eters are optimized based on tasks in an end-to-end manner. These deep features may
provide more predictive power than rule-based ones, although they suffer from an increased
training data size and weaker interpretability issues. For instance, the deep features ex-
tracted from a CNN model can predict lung cancer survival [100]. Other examples are that
such features can be used to discriminate benign and malignant lung tumors [101], and
to extract semantic features from breast mammography images [102]. They are proven to
reach expert-level performance in some considerably challenging applications [103, 104].
However, data-driven radiomics features also require addressing new challenges and facing
several issues. These include the need for appropriate training with prior knowledge due to
the limited size of available datasets and the high level of heterogeneity, especially when
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training networks from scratch and facing domain shifts. Recent studies show that some
success can be achieved with transfer learning from medical images (e.g. Rad-ImageNet
[105]) and reducing the amount of training data. Instead of adopting supervised learning,
unsupervised (or self-supervised) approaches such as auto-encoder can compress the raw
image space into a low-dimensional latent space without clinical labels [106].
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1.5 Summary of contributions

This dissertation covers the introduced three neuroimage analysis tasks: image segmentation,
image synthesis, and radiomics analysis. In the following, a brief introduction to the motivation
and contribution of each publication-based chapter is presented.

Chapter 3: Effective brain lesion and claustrum segmentation with ensembles of

deep nets

This chapter establishes a deep-learning, ensemble-model-based framework for effectively seg-
menting brain structures in MR images. Two distinct tasks - white matter hyperintensities
segmentation and claustrum segmentation are investigated.

Motivation. White matter hyperintensities (WMH) are commonly observed in FLAIR MRI
scans of elderly people, and they are associated with many neurological disorders such as
cognitive decline and dementia [107, 108, 109]. Manual pixel-wise delineation of WMH regions
is a subjective way to assess abnormalities and disease progression. However, this procedure is
labor-intensive and nonautomated for neuroradiologists. It shows high intra-rater, and inter-
rater variability [110]. The WMH Segmentation Challenge 2017 [111] was held to benchmark
segmentation algorithms at the 20th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI, 2017). We submitted a U-Net and ensemble
model-based solution to this challenge, which was containerized and evaluated by the organizers
on clinical multi-center datasets. The final test set includes 110 hidden cases from five different
MR scanners from three hospitals in the Netherlands and Singapore. Notably, the test sets
remained unseen to our team and other participants.

The claustrum is a thin and sheet-like gray matter structure of the mammalian forebrain
between the striatum and insular cortex, and it is connected to both the ipsilateral and the
contralateral hemisphere [112, 113, 114]. Recent studies suggest that it plays a role in fundamental
cognitive processes such as selective attention or task switching [115, 116]. Another interesting
perspective on the claustrum is its unique ontogeny and link to subplate neurons, which relates
to neurodevelopmental disorders such as preterm birth [117, 118]. Similar to white matter lesions,
claustrum segmentation is notoriously time-consuming, requires expert knowledge of the brain
anatomy, and is not feasible in large-scale studies of the human brain [119, 120]. Thus, to advance
our understanding of the claustrum in humans in population studies, an objective, accurate,
automated, and robust MRI-based segmentation method is in need.

Contributions and results. Our approach to segment WMH in MR images is based on an
ensemble of U-shape architectures with long-range connections [121]. We optimized individual
models with random weight initialization shuffled batches and aggregated them to vote the pixel
labels n. In the evaluation stage, the containerized method was submitted to the challenge
organizers, who then independently tested it on hidden one hundred and ten cases acquired
from five MRI scanners. We achieved the best Dice score, lesion-level precision, and robust
Hausdorff distance of 80%, 84%, and 6.30 mm, respectively, on held-out test datasets. These
numbers suggest that our method is state-of-the-art. We present a cross-scanner study to discuss
how the combination of modalities impacts on generalizability. Importantly, we presented a
quantitative study to show the effect of ensemble size and the effectiveness of the ensemble model.
We demonstrate that the proposed method has the potential to be applied in clinical practice.

For claustrum segmentation, we develop a multi-view ensemble-based approach to segment
the adult claustrum in T1-weighted MRI scans. We train two single-view models on the 2D
slices from axial and coronal views, respectively. During the inference stage, we predict the
single-view segmentation masks from two views and aggregate them by averaging the voxel-wise
probabilities. We trained and evaluate our method in 181 individuals, which were manually
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annotated by a neuroradiologist as a reference. We achieve a median volumetric similarity,
a robust Hausdorff distance, and a Dice score of 93.3%, 1.41 mm, and 71.8%, respectively,
representing equal or superior segmentation performance. In a leave-one-scanner-out evaluation,
we demonstrate good model generalizability on the images from unseen scanners at slightly
inferior accuracy. Furthermore, we find that our segmentation approach benefits from multi-view
aggregation. We conclude that the proposed method enables fast and robust automated claustrum
segmentation and thus yields considerable potential for accelerating MRI-based research of the
human claustrum.

Chapter 4: Efficient neonate claustrum segmentation with deep transfer learning

The chapter explores deep transfer learning to reduce annotation effort significantly. The research
questions are: given the same segmentation task but in a different image domain, do we need
to annotate a large amount of data from scratch as we did in the previous chapter? Or can we
leverage prior knowledge to reduce further annotation efforts?

Motivation. Claustrum development in humans is not well explored in neuroscience and relies
on MRI studies. Most studies focus on animals, while macrostructural and microstructural
maturation in humans remain unknown [122, 123]. Hence, close examination and characterization
of claustrum development in younger cohorts are of special interest; however, MRI data about
the claustrum in a sizable neonatal cohort are missing, mostly due to the lack of adequate
automated segmentation methods. Recently, automated segmentation of the human claustrum
in adults has been investigated by structural approximation to the dorsal claustrum [124] and
a 2D deep-learning approach [125]. Furthermore, in the previous chapter, a multi-view deep
learning-based model has been proposed [126] to segment the adult claustrum trained on a large
annotated dataset; however, there is no reliable automated segmentation method available for
the claustrum in neonatal MRI. It might be sub-optimal to perform manual segmentation of
neonate claustrum in 100+ T2-w scans from scratch and then using them to re-train the model.

Contributions and results. We transfer the knowledge learned from adult claustrum segmenta-
tion in T1-weighted scans to the new application. We develop a deep transfer learning-based
method to segment the claustrum in 558 T2-weighted neonatal brain MRI of the developing
Human Connectome Project (dHCP). We train and evaluate the method on 30 manual bilateral
claustrum annotations in neonates. With only twenty labeled scans, the method achieves a
median volumetric similarity, a robust Hausdorff distance, and a Dice score of 95.9%, 1.12 mm,
and 80.0%, respectively, representing an excellent agreement between the automated segmen-
tation and the reference. When comparing with inter-rater reliability, the method achieves
significantly superior volumetric similarity (p = 0.047) and Dice score (p < 0.005). Furthermore,
we demonstrate the effectiveness of deep transfer learning compared with non-transfer learning.
We observe that the model achieved satisfactory segmentation with only twelve annotated scans.
Finally, we confirm the model’s applicability on 528 scans and reveal its reliable segmentation in
97.4%.

Chapter 5: Unified multi-contrast MR neuroimage synthesis and its clinical

validation

This chapter develops a novel generative adversarial network to perform multiple-to-one cross-
modality synthesis for multi-contrast MRI and validates the synthetic images in a clinical
study.

Motivation. MRI datasets often consist of high-dimensional image volumes, multiple contrasts,
and repeated scans acquired at multiple time points. The imaging protocols broadly vary depend-
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ing on the imaging centers, which hinders the comparability between one another. Particularly
in multiple sclerosis brain imaging, double inversion recovery (DIR) is a sensitive sequence to
detect lesions but might not be a standard imaging sequence for all hospitals. However, existing
lesion quantification tools require identical modalities at multiple time points. Another example
is glioma imaging. Although automated glioma segmentation [16] holds promise for objective
assessment of tumor response, its routine clinical use is impaired by missing sequences due to
motion artifacts.

Potentially, cross-modality image synthesis can resolve those obstacles through data infilling
and re-synthesis. In multi-contrast MRI, multiple-to-one cross-modality mapping is highly
relevant as proprietary information of distinct individual modalities can be synergistic. There are
several challenges in cross-modality medical image synthesis: (1) the input and target modalities
are assumed to be not spatially aligned because registration methods for aligning modalities may
fail. It hinders the applicability of conventional regression methods. (2) input modalities may
be incomplete due to different clinical settings; thus, a traditional regression-based approach
would be restricted to the smallest uniform subset. (3) existing methods have limited scalability.
For example, one would need to train separated models for possible combinations of the input
domains when using fixed input and output, such as the Cycle-GAN setting [127]. Another open
question is how to evaluate the quality of synthetic images. Traditional metrics such as PSNR
and structural similarity [128] can provide quantitative quality measurement, but they cannot
quantify whether the image captures clinically relevant substructures. Hence, such synthetic
images should be interpreted by experts who can distinguish the image quality.

Contributions and results. We propose DiamondGAN, a unified, scalable multi-modal generative
adversarial network. It learns a multiple-to-one cross-modality mapping among non-aligned
modalities using only a pair of generators and discriminators optimized with a multi-modal
cycle consistency loss function. We provide qualitative and quantitative results on two clinically
relevant MRI sequence synthesis tasks, showing DiamondGAN ’s superiority over baseline models.
We present the results of an extensive visual evaluation performed by fourteen experienced
radiologists to confirm the quality of synthetic images. We observed that trained radiologists
cannot distinguish our synthetic double inversion recovery (synthDIR) images from real ones.

In a clinical study, we generate synthDIR images and compare their diagnostic performance to
conventional sequences in multiple sclerosis patients. These images and conventionally acquired
DIR (trueDIR) and FLAIR images were assessed for MS lesions by two independent readers,
blinded to the source of the DIR image. Lesion counts in the different modalities were compared
using a Wilcoxon signed-rank test, and inter-rater analysis was performed. Contrast-to-noise
ratios were compared for objective image quality. We observed that the utilization of synthDIR
allowed the detection of significantly more lesions than the use of FLAIR image.

Chapter 6: Lesion-specific, uncertainty-aware, and domain-adaptive synthesis

Motivation. In the previous chapter, we demonstrated that generative adversarial networks
could synthesize a target contrast MRI from multi-contrast input and improve lesion detection
compared to FLAIR and T2-w sequences. Nonetheless, MS lesions typically are very small,
GANs are at risk of synthesizing images of high morphologic similarity to the target image
while failing to translate the clinically important lesions. The ability of a GAN to learn about
pathology-specific anomalies might open the door for further customization and improvements
in this regard. Such domain knowledge has improved a network’s training stage in various
classification tasks, such as the categorization of breast lesions and the detection of malignant
thyroid nodules [129, 130]. Targeted translation of parenchymal lesions and visualization of
model confidence (i.e., uncertainty quantification), can further augment their utility in practice.
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In addition to lesion-specific and uncertainty-aware properties, it is an open question of how
GANs can be adapted to different image domains that are non-identical to the training set.
However, existing synthesis frameworks are mostly developed and evaluated on single-domain
data (e.g., images from the same scanner), with limited consideration of model robustness
when testing on unseen image domains that might be collected from another imaging scanner
or acquisition protocols. Although we have developed an uncertainty quantification to enable
us to be aware of unreliable synthetic pixels, it does not address the issue of domain shift.
Hence, domain adaptation is crucial for real-world deployment in clinical routine. In particular,
unsupervised domain adaptation (UDA) is more practical as it does not require additional
expensive supervision to fine-tune the pre-trained model.

First, there is a technical difference in domain adaptation between image synthesis and image
segmentation (as we will present in detail in the paper). Second, previous works developed
2D or patch-based adaptation for image segmentation [60, 58]. Although these works show
promising results, they are limited to 2D or patch domains which are insufficient for many
applications, such as neuroimaging data which requires domain adaptation in a 3D fashion.
The 3D image-to-image synthesis model dealing with full-volume imaging data is heavy-weight
compared to the patch-based one. However, extending existing work from 2D to 3D is non-trivial.
In addition to model complexity, another challenge is that the number of 3D volumetric samples
is very limited, while 2D slices are more accessible.

Contributions and results. First, we tailor a loss function to improve GANs for synthesizing
high-contrast DIR images and propose using uncertainty maps to enhance its clinical utility and
trustworthiness further. We train GANs to synthesize DIR from a training set of FLAIR and T1-w
scans of 50 MS patients. In another 50 patients as a test set, two blinded readers independently
quantified lesions in synthetic DIR (synthDIR), acquired DIR (trueDIR), and FLAIR. Of the 50
test patients, 20 are acquired on the same scanner as training data (internal data), while 30 are
acquired at different scanners with heterogeneous field strengths and protocols as external data.
Lesion-to-background ratios (LBR) for MS-lesions vs. normal appearing white matter, as well as
image quality parameters, were calculated. Significantly more MS-specific lesions were found
in synthDIR compared to FLAIR. Importantly, improvements in lesion counts were similar in
internal and external data. Measurements of LBR confirmed that lesion-focused GAN training
significantly improved lesion conspicuity. We generate uncertainty maps to visualize model
confidence by Monte-Carlo dropout. We observe that the use of uncertainty maps furthermore
discriminates between MS lesions and artifacts.

Second, we introduce unsupervised domain adaptation for 3D medical image synthesis and
present the technical difference with the existing setup in image classification and segmentation.
We propose an efficient 2D variational-autoencoder approach to perform UDA in a 3D manner.
We present empirical studies on the effects of the amount of data needed for adaptation and
the effect of critical hyper-parameters. We show that the proposed method can significantly
improve the synthesis quality on unseen domains. The proposed 2D s-VAE method outperforms
both heuristic data augmentation and a 3D VAE method in two tasks. 3D VAE encoder is more
computationally expensive since the encoder of 3D VAE has 5.17 million learnable parameters
while 2D s-VAE only has 1.73 million ones. Although there is still a visible performance gap
between all the UDA methods and the upper bound, our 2D s-VAE method provides an effective
and efficient solution when the output modality from the target domain is not accessible

Chapter 7: Imbalance-aware self-supervised radiomics

Motivation. Radiomics can quantify the characteristics of regions of interest in medical data.
Classically, they are pre-defined statistics of shape, texture, and other low-level image features. As
an alternative, supervised deep learning-based representations are effective task-specific features
but require expensive annotations and often suffer from over-fitting and data imbalance issues.
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1.5 Summary of contributions

Recent contrastive learning-based methods [131, 132, 133] learn informative representations
without supervision from manual labeling. However, they often rely on large training batches, and
most of them only work for 2D images. Due to the high dimensionality and the limited number of
training samples in the medical field, applying contrastive-learning-based approaches might not
be practically feasible in a 3D setting. In this study, we identify two main differences required
to adapt such self-supervised representation learning for the medical domain compared to the
natural image domain: i) Medical images are often multi-modal and three-dimensional. Thus,
learning 3D representation for medical imaging would be computationally costly. ii) medical
datasets are heterogeneous and inherently imbalanced, e.g., distribution disparity of disease
phenotypes. Existing methods are built upon approximately balanced datasets (e.g., CIFAR
[134], and ImageNet [69]) and do not assume the existence of data imbalance. Thus, handling
data imbalance is not well investigated in the context of self-supervised learning.

Contributions and results. We address the challenge of learning an effective representation of
a 3D medical image without supervision under data imbalance. We propose a self-supervised
representation learning framework to learn high-level features of 3D volumes to complement
existing radiomics features. Specifically, we demonstrate how to learn image representations
in a self-supervised fashion using a 3D Siamese network. More importantly, we deal with data
imbalance by exploiting two unsupervised strategies: a) sample re-weighting and b) balancing
the composition of training batches. We observe that combining the learned self-supervised
feature with traditional radiomics improves brain tumor classification and lung cancer staging
tasks covering MRI and CT imaging modalities.
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2 Background

This dissertation covers several deep learning-related topics, including deep convolutional net-
works, generative adversarial networks, transfer learning, domain adaptation, and contrastive
learning. Hence, this chapter aims to present key concepts and formulations used throughout the
dissertation, but it is not intended to be a comprehensive overview of each topic. For complete
and in-depth theory and analysis, please refer to book sources [135, 136, 137, 138].

2.1 Neural network

Neural networks are non-linear statistical modeling to model complex relationships between
inputs and outputs and to find patterns in data. A neural network contains a number of connected
units called neurons and is organized in layers. One example is Fig. 2.1 which contains an input
layer where data is fed to the network, three hidden layers to process the data as it passes
through, and an output layer to generate a prediction. The network is optimized to recognize
informative patterns in the training data by comparing the output, and the actual reference
under an objective function [22]. Each neuron in the network can be formulated as follows:

f̂(x) = h(wTx + b) (2.1)

where x denotes the input vector, w = (w1, · · · , wn) is the weight vector and b is called bias to
shift the sum of weighted input by adding a constant. h(·) is the activation function to transform
the input signals.

Figure 2.1: An example of neural network architecture with five layers. It consists of an input layer, three
hidden layers, and an output layer. These layers are composed of a number of connected
units called neurons. Taken from [139]

The activation functions define the output of a neuron given an input or set of inputs and are
often non-linear. The commonly used ones are:

Sigmoid

σ(x) =
1

1 + e−x
(2.2)

Tanh

σ(x) =
ex − e−x

ex + e−x
(2.3)
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2 Background

Rectified linear unit (ReLU) [140]

σ(x) = max(0, x) (2.4)

Leaky ReLU [141]

σ(x) = max(0.1x, x) (2.5)

Maxout [142]

σ(x) = max(wT

1 x + b1, w
T

2 x + b2) (2.6)

Swish [143]

σ(x) =
x

1 + e−βx
(2.7)

After combining all neurons into one layer, a network with one hidden layer can approximate
any continuous function f̂(x) on a compact subset of R

n, which can be formatted as a linear
combination of N individual neurons:

f̂(x) =
N−1
∑

i=0

aih(wT

i x + bi) (2.8)

where ai is the weights for each neuron. All trainable parameters of the network can be
summarized as:

θ = (a0, b0,w0, · · · , aN , bN ,wN)T. (2.9)

In order to increase the model capacity and non-linearity, we can introduce more non-linear
hidden layers between the input layer and output layer, as shown in Fig. 2.1. These layers
are connected to a deep neural network (called a ‘multilayer perceptron’). One theory on the
approximation ability of neural networks is that shallow and deep networks can arbitrarily
approximate any continuous function on a compact domain.

Deeper architecture benefits feature representation by reorganizing weights along different
paths and re-using latent features [144, 145]. A deep neural network with several layers can be
formulated as follows:

f̂(x;Θ) = (fm ◦ · · · ◦ f1)(x)

= hm
(

hm−1
(

· · ·
(

h2
(

h1(wT

1 x + b1
)

+ b2
)

+ bm−1

)

+ bm
)

(2.10)

where Θ = {w1, · · · ,wm, b1, · · · , bm} is the set of learnable parameters.

Parameters Θ are learned in the training phase from a training set. The training phase can be
described as an optimization process of minimizing the error between the prediction and the
reference. The optimization is non-linear and non-convex; hence there is no analytic solution for
the parameter set Θ. Therefore, the gradient descent algorithm is utilized to learn the parameters
iteratively. The back-propagation strategy [146] can efficiently compute the gradient and update
the parameters Θ as:

Θ(τ+1) = Θ(τ) − η∇E(Θ(τ)). (2.11)

where η is the learning rate and τ denotes the iteration index.

2.2 Convolutional neural networks

Convolutional neural networks are a tailored and regularized version of deep neural networks
for image-based tasks such as computer vision and medical imaging. It can capture spatial
and structural information in 2D or 3D images and benefits from mechanisms including local
receptive field, weight sharing, and down-sampling [147]. Different neurons’ receptive fields
partially overlap so that they cover the entire visual field.
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2.2 Convolutional neural networks

Figure 2.2: An example of convolutional neural network architecture for 3D medical image segmentation.
It consists of convolutional layers and pooling layers.

According to existing designs, networks for image classification typically contain convolutional
layers, pooling layers, skip connections, and fully connected layers. On top of these layers,
networks for image segmentation usually contain up-sampling layers to interpolate feature maps
for generating final segmentation maps with the same size as the input image. For image
classification, there are milestone architectures over these years, including AlexNet [148] (2012),
VGG-Net [149] (2014), Inception [150] (2015), ResNet [151] (2015), DenseNet [152] (2017), and
EfficientNet [153] (2019). For image segmentation, some of the most popular architectures are
fully convolutional network (FCN) [47], U-Net [121, 154], V-Net [52] and their variants [155,
156, 157, 48]. They are widely used as backbones for specific applications. Fig. 2.2 presents the
structure of a convolutional neural network for image classification, and Fig. 2.3 shows the U-Net
architecture for image segmentation. We introduce several functional layers in the following:

Convolutional layer. The convolutional layer convolves the input and passes its result to the
next layer. It extracts local features at different locations from the previous layer (including
inputs) and maps the information into a new feature map. During the convolution, the input from
the previous layer is split into perceptrons, creating local receptive fields and finally compressing
the perceptrons into feature maps.

At lth layer, assuming a set of N l learnable filters, each filter extracts a particular feature at
certain positions on the input. The output of layer l denoted as Y (l) will contain N l feature

maps, where the ith feature map Y
(l)
i can be computed as:

Y
(l)
i = h





N(l−1)
∑

j=1

K
(l)
i,j ∗ Y

(l−1)
j + B

(l)
i



 (2.12)

Where K
(l)
i,j is the applied convolutional kernel, B

(l)
i is a bias matrix, h is the activation function

illustrated in section 2.1. Recently, there have been several representatives works to improve its
effectiveness and efficiency, such as dilated convolution [158], deformable convolution [159], and
depth-wise separable convolution [160].

Pooling layer. The pooling layer reduces the data dimensions by sub-sampling the feature maps
at one layer by a specific factor and a function. It reduces the number of trainable parameters
while it eases the overfitting issue. Pooling operations take a small local region as the input
and generate a single value representing this region by defining a downsampling size. The
representative value of the receptive field can be computed with a max function (‘max-pooling’)
or an average function (‘average pooling’). Another approach to downsampling with a similar
effect of pooling is using convolutions with strides [147, 22].
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Figure 2.3: A U-shape convolutional neural network architecture for medical image segmentation. Dif-
ferent arrows represent layers and operations. Blue rectangles represent the multi-channel
feature maps, and the copied feature maps by skip connect are shown in white rectangles.

Up-sampling layer. The up-sampling layer is commonly used in image segmentation networks
to up-sample a feature map to a higher resolution. One approach is re-sampling and interpolation.
It re-scales an input feature map to the desired size with an interpolation method such as bilinear
interpolation. An alternative approach is unpooling [161], regarded as the reverse of pooling.
In an un-pooling layer, an approximate inverse of the previous pooling layer is obtained by (1)
recording the position of each maximum activation value within each pooling region and (2)
using this position information prior to reconstructing the previous layer into a higher-resolution
feature map. Another method is transpose convolution [162]. The transpose convolution is
regarded as a reverse of the convolution operation but not a so-called mathematically-defined
deconvolution. In the transpose convolution, the kernel is placed over the input, and values of
the input are multiplied successively by the kernel weights for producing the up-sampled feature
map.

Skip connection. A skip-connection is to connect two layers directly while it skip one or
more layers between. It was introduced to relieve the difficulty in non-linearity optimization
by propagating a linear component through the neural network layers. The skip-connections
propagate the gradient throughout the model, which can alleviate the vanishing gradient problem
[151, 152] due to increasing depth of layers. In segmentation networks which are encoder-decoder-
like architectures, the skip-connections are utilized to connect each decoder-encoder pair and
bring the features with higher spatial resolution from shallow layers of the encoder directly to
the layers of the decoder.

Loss function. The loss function measures how far an estimated value is from its reference value
and supervises the network training. In image classification tasks, commonly-used loss functions
include the categorical cross-entropy loss, Focal loss [51], etc. The categorical cross-entropy loss
is defined as:

LCE = −
1

N

N
∑

i=1

C
∑

c=1

δ(yi = c) log(P (yi = c)) (2.13)

where N denotes the data number and C represents the categories number. δ(yi = c) is the
indicator function and P (yi = c) is the predicted probability by the model.
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2.3 Generative adversarial networks

The Focal loss is a modified cross-entropy loss that weighs the importance of each sample to
the loss based on the classification error to tackle the class imbalance issue. It is defined as:

LFL = −
1

N

N
∑

i=1

C
∑

c=1

δ(yi = c) (1 − P (yi = c))γ log(P (yi = c)) (2.14)

where γ is a parameter to control the rate of down-weighting easy examples. When γ = 0, LFL

is equivalent to LCE .
Since image segmentation is essentially an image classification task, i.e., it aims to classify

each pixel to a label, thus above-mentioned cross-Entropy loss and Focal loss can be used as loss
functions for segmentation. Some other loss functions, such as Dice loss, Tversky loss [163], and
boundary loss [164] are tailored ones for image segmentation. Assume p(xi) is the prediction
probability of a voxel xi and g(xi) is the corresponding reference for the same voxel. The Dice
loss is defined as:

LDice(X) = −

2
∑

xi∈X

p(xi)g(xi) + ε

∑

xi∈X

p(xi) +
∑

xi∈X

g(xi) + ε
(2.15)

where X is the training image set, ε is a term to prevent the denominator from being 0.

2.3 Generative adversarial networks

Generative modelling. Generative models take a training set drawn from an unknown dis-
tribution pdata and return an estimate of that distribution pmodel. The estimate pmodel can be
evaluated for a particular given value of x. Hence, generative models are able to generate infinite
samples from the model distribution pmodel. Many approaches to generative modeling are based
on density estimation which is explicit; given observed training examples of a random variable x,
inferring a density function pmodel that explains the training data, as shown in Fig. 2.5.

In contrast, generative adversarial networks (GANs) [165, 166] are implicit generative models
that infer the probability distribution p(x) without necessarily representing the density function
explicitly. Readers can be more clear about the position of GANs in generative modelling by
referring to [167].

Figure 2.4: An example of generative modelling. Several one-dimensional data points are used to fit a
Gaussian density function that explains the observed samples.

Overview of GANs. The basic idea of GANs is to set up a game between two networks. One of
them is called generator. The generator creates samples that are intended to be from the same
distribution as the training data. The other network is called discriminator which distinguishes
samples to whether they are from the distribution (‘real’) or not (‘fake’). The discriminator
learns to classify the inputs into two classes with supervised learning. In the competition, the
generator is trained to fool the discriminator. Formally, GANs are a structured probabilistic
model containing latent variables z and observed variables x. The two nets in the game are
represented by two differentiable functions. The discriminator is a function D that takes x as
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input and uses θ(D) as parameters. The generator is defined by a function G that takes z as
input and uses θ(G) as parameters.

Both nets are optimized with cost functions. The discriminator aims to minimize an objective
function that involves two nets J (D)(θ(D), θ(G)), and must do so while controlling only θ(D). The
generator wishes to minimize J (G)(θ(D), θ(G)) with respect to only θ(D). This is because each
network’s cost depends on the other network’s parameters, but the two networks are independent
in parameters.

Figure 2.5: A schematic view of GANs as an implicit generative model.

2.4 Transfer learning and domain adaptation

Transfer learning solves a basic problem of insufficient training data in a given task. It transfers
the knowledge from the source domain to a target domain by relaxing the assumption that the
training data and the test data must be independent and identically distributed. For example,
transferring knowledge from natural image domain to medical domain [168] can be highly helpful
due to insufficient training data in the latter domain. The procedure of transfer learning is
illustrated in Figure 2.6.

Figure 2.6: The procedure of transfer learning between source and target domains.

A domain can be represented by D = {χ, P (X)}, which consists of two parts: an image space
χ and an edge probability distribution P (X) where X = {x1, ..., xn} ∈ χ. A task can be defined
by T = {y, f (x )}. It contains two parts: a label space y and a target prediction function f (x ).
f (x ) can also be regarded as a conditional probability function P(y|x ). Given a source domain
and a target domain with data X and its distribution P (X), Ds={Xs, P (Xs)}, Dt={Xt, P (Xt)}
and a shared output space Y = {Y }, transfer learning can be formally defined as follows:
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2.4 Transfer learning and domain adaptation

Definition of transfer learning: Given a target learning task Tt based on data from target
domain Dt, and we can get the help from Ds for the source learning task Ts. Transfer learning
aims to improve the performance of predictive function fT for learning task Tt by discovering
and transferring latent knowledge from Ds and Ts, where Ds = Dt or Ts = Tt. In addition, in
the most case, the size of Ds is much larger than the size of Dt, Ns is much larger than Nt.

Domain adaptation is a sub-field of transfer learning. In domain adaptation, it is assumed
that the source and target domains share the same feature space but in different distributions;
in contrast, transfer learning includes cases where the target domain’s feature space is different
from the source feature space or spaces. A predictive model f(·) which approximates P (Y |X)
trained on the source domain Ds is likely to degrade on the target domain Dt which presents a
domain shift. Among existing works, one of the key ideas is to match the input space for both
domains in the feature space so that the mapping can be invariant to the inputs [169].
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3 Effective brain lesion and claustrum

segmentation with ensembles of deep nets

This chapter has been published as two peer-reviewed journal publications:

[1] H. Li, G. Jiang, J. Zhang, R. Wang, Z. Wang, W.-S. Zheng, and B. Menze. “Fully convolu-
tional network ensembles for white matter hyperintensities segmentation in MR images”. In:
NeuroImage 183 (2018), pp. 650–665

[2] H. Li, A. Menegaux, B. Schmitz-Koep, A. Neubauer, F. J. Bäuerlein, S. Shit, C. Sorg,
B. Menze, and D. Hedderich. “Automated claustrum segmentation in human brain MRI using
deep learning”. In: Human Brain Mapping 42.18 (2021), pp. 5862–5872

Synopsis: The above two works develop effective deep learning based methods with ensemble
learning for brain structure segmentation. Specifically, publication ♯1 establishes a state-of-the-art
algorithm for white matter hyperintensities segmentation from FLAIR and T1 scans, which
won a segmentation grand challenge at MICCAI 2017. The ensemble of single deep neural nets
significantly boosts segmentation performance on multi-center MRI scans, especially improves the
segmentation of small lesions. Technical details, methodological choice and analysis are presented.
Publication ♯2 further develops the methodology by incorporating multi-view information and
improve the segmentation accuracy of human claustrum. Both two segmentation methods reach
expert-level performance, are evaluated in a cross-center manner and have potential in real-world
clinical practice.

Contributions of thesis author: algorithm design and implementation, computational
experiments and composition of manuscript.
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A B S T R A C T

White matter hyperintensities (WMH) are commonly found in the brains of healthy elderly individuals and have

been associated with various neurological and geriatric disorders. In this paper, we present a study using deep

fully convolutional network and ensemble models to automatically detect such WMH using fluid attenuation

inversion recovery (FLAIR) and T1 magnetic resonance (MR) scans. The algorithm was evaluated and ranked 1st

in the WMH Segmentation Challenge at MICCAI 2017. In the evaluation stage, the implementation of the algo-

rithm was submitted to the challenge organizers, who then independently tested it on a hidden set of 110 cases

from 5 scanners. Averaged dice score, precision and robust Hausdorff distance obtained on held-out test datasets

were 80%, 84% and 6.30mm respectively. These were the highest achieved in the challenge, suggesting the

proposed method is the state-of-the-art. Detailed descriptions and quantitative analysis on key components of the

system were provided. Furthermore, a study of cross-scanner evaluation is presented to discuss how the combi-

nation of modalities affect the generalization capability of the system. The adaptability of the system to different

scanners and protocols is also investigated. A quantitative study is further presented to show the effect of

ensemble size and the effectiveness of the ensemble model. Additionally, software and models of our method are

made publicly available. The effectiveness and generalization capability of the proposed system show its potential

for real-world clinical practice.

1. Introduction

Small vessel diseases are mainly systemic disorders that affect various

tissues and organs of human body. These diseases are thought to be the

most frequent pathological neurological process and have a crucial role

in at least three fields: stroke, dementia and aging (Pantoni, 2010).

White matter lesions characterized by bilateral, mostly symmetrical

hyperintensities, are commonly seen on FLAIR MRI of clinically healthy

elderly people; furthermore, they have been repeatedly associated with

various neurological and geriatric disorders such as mood problems and

cognitive decline (Kim et al., 2008; Debette and Markus, 2010). Manual

delineation of WMH area, as shown in Fig. 1, is a reliable way to assess

white matter abnormalities but this process is laborious and

time-consuming for neuroradiologists and shows high intra-rater and

inter-rater variability (Grimaud et al., 1996).

Computer vision and machine learning techniques have increasingly

shown a promising road for automatic diagnosis of diseases through

medical imaging. By analyzing imaging data in a statistical manner,

many image processing algorithms dealing with brain lesions generalize

well within closely related applications, for example, in the segmentation

of WMH, multiple sclerosis (MS), tumors, stroke, and even traumatic

brain injury. Although various computer-aided diagnosis systems have

been proposed for these different brain lesion segmentation tasks, the

reported results are largely incomparable due to different datasets and

evaluation protocols.

Van Leemput et al. (2001) presented an early attempt at developing
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an unsupervised-learning-based segmentation system to detect multiple

sclerosis lesions from large datasets of T1-weighted (T1), proton

density-weighted (PD) and T2-weighted (T2) scans. The method simul-

taneously estimates the parameters of a stochastic model for normal

brain MR images and detects MS lesions as outliers of the model. Anbeek

et al. (2004) developed a supervised-learning-based automated system

using T1, inversion recovery, PD, T2 and fluid attenuation inversion re-

covery (FLAIR) scans. Intensity and 3D spatial features were extracted

from the voxels and are used to train a k-nearest neighbors classifier.

Dyrby et al. (2008) used artificial neural networks based on intensity and

spatial information, in which six optimized networks were produced to

investigate the impact of different input modalities on WMH segmenta-

tion. Beare et al. (2009) developed a method that searched for WMHs

per-region instead of per-voxel. The region-based features are combined

with an adaptive boosting statistical classifier. Geremia et al. (2010,

2011) were the first to address the MS lesion segmentation in a

straightforward learning approach using context-rich, symmetry and

local spacial features and random forest. Sim~oes et al. (2013) built the

intensity histogram of FLAIR by a Gaussian mixture model. Then the

probability of a voxel depends on not only the voxel's intensity but also

on its neighbors' current class probabilities. Schmidt et al. (2013)

contributed an open source tool for the segmentation of hyperintensities

that integrates with the popular SPM package. Yoo et al. (2014) devel-

oped an intensity-based, monospectral segmentation method in which

the optimal intensity threshold on FLAIR images varied with WMH vol-

ume. Very recently, Ghafoorian et al. (2017) integrated the anatomical

location information into the convolutional neural networks (CNN), in

which several deep CNN architectures that consider multi-scale patches

or take explicit location features were proposed. Moeskops et al. (2017)

proposed a patch-based deep CNN to segment brain tissues and WMH in

MR images.

In computing research, benchmarking on specific problems is an

effective way to fairly compare state-of-the-art methods. There have been

several related benchmarks on automated segmentation of different

brain tissues in MR images in the field of medical image analysis. The

Multiple Sclerosis Lesion Segmentation Challenge 2008 organized by

Styner et al. (2008) is one of the early contests for comparing the

methods for automatic extraction of MS lesions from T1, T2 and FLAIR

MRI data. The Ischemic Stroke Lesion Segmentation Challenge (ISLES)

from 2015 to 2017 organized by Maier et al. (2017) provides a platform

for fair comparison of stroke lesion segmentation algorithms. The

Multi-modal Brain Tumor Segmentation Challenge (BRATS) organized

by Menze et al. (2015) draws much attention since 2012 which focuses

on segmentation of low- and high-grade gliomas, more recently, pre-

diction of patient overall survival. Different from the above tasks, WMH

tend to have consistent patterns such as significant symmetry, but they

are more scattered, often with some regions of very small size and

irregular shapes. Furthermore, compared with other brain tissue seg-

mentations, WMH segmentations are more likely to be susceptible to the

presence of motion artefacts and other brain abnormalities, such as brain

infarcts (Gouw et al., 2010).

TheWMH Segmentation Challenge 20173 was held to compare state-of-

the-art algorithms in conjunction with the 20th International Conference

on Medical Image Computing and Computer Assisted Intervention

(MICCAI, 2017). This paper describes our winning entry to this challenge

in detail, which was evaluated by the organizers on clinical datasets. The

algorithm was containerized and applied to the test datasets by the

challenge organizers, while the test sets remained unseen to us and other

contestants. The test set includes 110 secret cases from five different MR

scanners world-widely from three hospitals in the Netherlands and

Singapore. Our approach to detecting WMH in MR images is based on an

ensemble of convolution-deconvolution architecture (Long et al., 2015)

with long-range connections (Ronneberger et al., 2015) which simulta-

neously classifies each pixel and locates objects of an input image. In our

system (as shown in Figs. 2, 4, 5), we implement a network architecture

with 19 layers that are optimized for classifying and localizing the WMH.

Ensemble models trained with random parameter initializations and

shuffled data are employed for voting the pixel labels in the final

evaluation.

This paper is organized as follows. Section 2 describes the datasets,

rating criteria, five evaluation metrics on segmentation performance and

rank method of the challenge. Section 3 presents in detail each compo-

nent of our method and how some key parameters are optimized. Section

4 evaluates the proposed system on the public training dataset (60 cases)

and reports results for the hidden held-out dataset (110 cases). Section 5

discusses different aspects of our winning method. This includes the

motivation to use 2Dmodel instead of 3D one, a novel cross-scanner study

on how the combination of modalities and data augmentation strengthen

the generalization capability to unseen scanners. Furthermore, evalua-

tion on the adaptability to various scanners as well as quantitative

analysis on the optimal number of ensemble models are performed.

2. Materials

This section mainly describes the WMH Segmentation Challenge,

datasets, evaluationmetrics and rank method which are referred to in the

rest of the article.

2.1. MICCAI WMH segmentation challenge overview

The challenge organized as a joint effort of the UMC Utrecht, VU

Amsterdam and NUHS Singapore, aims at, for the first time, benchmarking

methods for automatic WMH segmentation of presumed vascular origin.

Sixty cases from three centers were released as a public training set for

participants to build and evaluate their algorithms. One hundred and ten

Fig. 1. A sample of MR slice from FLAIR modality (left), and its corresponding manual annotation of WMH by a neuroradiologist (right).

3 http://wmh.isi.uu.nl/.
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hidden cases from five scanners are used by the organizers to test the

algorithms. Notably, all algorithms are containerized by Docker (Merkel,

2014) to guarantee that the test data remains secret and cannot be

included in any way in the training procedure of the techniques. Twenty

international teams participated, and further information including

training data and the results on test set are made public via the following

url: http://wmh.isi.uu.nl/results/.

2.2. Datasets

In all reported experiments, we relied on the publicly available

dataset from the MICCAI WMH Challenge. Properties of the data are

summarised in Table 1. A notable feature is that the images were ac-

quired from five different scanners from three hospitals in the

Netherlands and Singapore. As shown in Table 1, there exists large dif-

ference in acquisition settings; in particular voxel sizes of the captured

images differ significantly among the five scanners. For each subject, a

3D T1-weighted image, and a 2Dmulti-slice FLAIR image were provided.

Since the manual reference standard is defined on the FLAIR image, a 2D

multi-slice version of the T1 image was generated by re-sampling the 3D

T1-weighted image to match with the FLAIR one. Finally, the pre-

processed images were corrected for bias field inhomogeneities using

SPM12.4 The 3D FLAIR image was resampled to a slice-thickness of

3.00mm and there is no gap between slices.

The dataset consists of in total 170 subjects with FLAIR and T1 MR

images from five different scanners along with their binary masks. The

images from 60 subjects were made available during the training stage.

The images from the remaining 110 subjects were used as the hidden test

set to evaluate performance of methods submitted to the challenge.

Notably, the test set also includes images of 20 subjects captured by other

two unseen scanners, which were not used to capture images for training.

This dataset setting encourages the participants to submit algorithms that

could be robust to unseen scanners.

2.3. Evaluation metrics and rank method

Five different metrics are used by the challenge organizers to compare

and rank the methods by different teams; those metrics evaluate the

segmentation performance in different aspects.

Given a ground-truth segmentation map G and a segmentation map P

generated by an algorithm, the five evaluation metrics are defined as

follows.

2.3.1. Dice similarity coefficient (DSC)

DSC ¼
2ðG \ PÞ

jGj þ jPj
(1)

This measures the overlap in percentage between G and P.

2.3.2. Hausdorff distance (95th percentile)

Hausdorff distance is defined as:

HðG;PÞ ¼ max

�

sup
x2G

inf
y2P

dðx; yÞ; sup
y2P

inf
x2G

dðx; yÞ

�

(2)

where d(x, y) denotes the distance of x and y, sup denotes the supremum

and inf for the infimum. This measures how far two subsets of a metric

space are from each other. As used in this challenge, it is modified to

obtain a robustified version by using the 95th percentile instead of the

Fig. 2. Overall framework of the training stage.

Table 1

Characteristics ofMICCAI WMH Challenge dataset. The training set consists 60 subjects' data from 3 scanners and the test set includes 110 cases from 5 scanners (two of

them are not represented in the training set).

Datasets Scanners Name Voxel Size ðm3Þ Size of FLAIR Scans Train Test

Utrecht 3T Philips Achieva 0.96 � 0.95 � 3.00 240 � 240 � 48 20 30

Singapore 3T Siemens TrioTim 1.00 � 1.00 � 3.00 252 � 232 � 48 20 30

GE3T 3T GE Signa HDxt 0.98 � 0.98 � 1.20 132 � 256 � 83 20 30

GE1.5T 3T Philips Ingenuity 1.04 � 1.04 � 0.56 secret – 10

PETMR 1.5T GE Signa HDxt 1.21 � 1.21 � 1.30 secret – 10

4 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/.
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maximum (100th percentile) distance.

2.3.3. Average volume difference (in percentage)

Let VG and VP be the volume of lesion regions in G and P respectively.

Then the Average Volume Difference (AVD) in percentage is defined as:

AVD ¼
jVG � VPj

VG

(3)

2.3.4. Sensitivity for individual lesions (recall)

Let NG be the number of individual lesions delineated in G, and NP be

the number of correctly detected lesions after comparing P to G. Each

individual lesion is defined as a 3D connected component. Then the recall

for individual lesions is defined as:

Recall ¼
NP

NG

(4)

2.3.5. F1-score for individual lesions

Let NP be the number of correctly detected lesions after comparing P

to G. NF be the number of wrongly detected lesions in P. Each individual

lesion is defined as a 3D connected component. Then the F1-score for

individual lesions is defined as:

F1 ¼
NP

NP þ NF

(5)

The full source code for computing the evaluation metrics can be

found on: https://github.com/hjkuijf/wmhchallenge/blob/master/

evaluation.py.

For each team, the values of those five metrics were computed by the

organizers independently. For each evaluation metric, the performances

of all of the teams were sorted from best to worst. Then a calibrated score

for each team was computed by normalising its performance w. r.t the

range of all the actual performances for that metric. Thus the best team

was assigned a rank score of one, while the worst team got a rank score of

zero. Other teams received a score of between (0,1). Finally, for each

team, the rank scores of the fivemetric were averaged into the final score,

being the overall performance of that team. For consistency, when pre-

senting the results of the challenge, we follow exactly the same ranking

criteria.

3. Methods

3.1. Further preprocessing

A further preprocessing on top of the basic preprocessing steps pur-

sued by the organizers (Section 2.2) plays an important role in our overall

framework. We aim at employing a simple and effective preprocessing

step on both training and held-out testing set. It is motivated by three

objectives: 1) to guarantee a uniform size of all data for deep convolu-

tional networks in the training and test stage, 2) to normalize voxel in-

tensity to reduce variation across subjects. and 3) to equip the CAD

system with desired invariance and robustness. We enforce these desired

data properties by implementing further steps in the training of our al-

gorithm: 1) cropping or padding each axial slice to a uniform size, 2)

Gaussian normalization on the brain voxel intensity, and 3) data

augmentation on the processed images. Most of these steps are performed

for both FLAIR and T1 modalities and for both the training and test

stages. Data augmentation was performed only during the training stage.

Firstly, all the axial slices were automatically cropped or padded to

200� 200, in order to guarantee a uniform size for input to the deep-

learning model. Secondly, Gaussian normalization was employed to

normalize the intensity distributions for each 3D scan. This includes three

steps. Firstly, a threshold was empirically set to obtain an initial binary

brain mask. Secondly, for each axial slice of the obtained binary masks,

the largest connected component was selected. Thirdly, the holes inside

the connected component was filled using morphology operations. Thus

a final brain mask was obtained for each slice. For each 3D scan, Gaussian

normalization was then employed to rescale the voxel intensities within

each individual's brain mask.

The thresholds for creating the brain masks were empirically set to 70

for FLAIR and 30 for T1 respectively. It was noted that several methods

submitted for the contest extracted the brain using common tools such as

BET (Smith, 2002), where the skull was also removed. However, we

found the removal of skull has little effect on the performance of the

proposed system.

3.1.1. Data augmentation

Data augmentation is an effective way to equip the deep networks

with desired invariance and robustness properties when training data are

limited. In case of MR images among different subjects and scanners, due

to variations of head orientations, voxel sizes and WMH distribution, we

primarily need rotation and scale invariance as well as robustness to

shear transformation. For each axial slice, three transformations

including rotation, shear mapping and scaling were applied, each within

a parameter range. The parameter range represents the variation in

different aspects between subjects in clinical practice; for example,

rotation of brain is in the range of [-15�, 15�]. Table 2 lists the parameter

range for each of the three transformations. It should be noted that the

scaling used in the training of the algorithmwas in the range of (0.9, 1.1),

representing the range of voxel size ratios in the training data sets

(Table 1), while some test sets had noticeable larger ratios (a factor of

1.21 between the PETMR and the Singapore data set). This indicates the

robustness of our approach, but also leaves potential room for

improvement in future studies exploring the optimal scaling of the data

during training.

Fig. 3 shows an example of the resulting slices after applying the

transformations. After data augmentation, we obtain a dataset four times

larger than the original one.

3.2. Fully convolutional network

3.2.1. 2-D convolutional network architecture

Convolutional neural network has proven to be an effective compu-

tational model for automatically extracting image features. Recently the

fully convolutional networks (FCN) (Long et al., 2015) and their its ex-

tensions (Milletari et al., 2016) have been used for medical images seg-

mentation. We build a variant of FCN architecture based on U-Net

(Ronneberger et al., 2015), which takes as input the axial slices of two

modalities from the brain MR scans during both training and testing. Our

network is shown in Fig. 4. For each patient, the FLAIR and T1 modalities

are fed into the U-Net jointly as a two-channel input. It consists of a

down-convolutional part that shrinks the spatial dimensions (left side),

and up-convolutional part that expands the score maps (right side). The

skip connections between down-convolutional and up-convolutional

were employed.

In this model, two convolutional layers are repeatedly employed,

each followed by a rectified linear unit (ReLU) and a 2 � 2 max pooling

operation with stride 2 for downsampling. At the final layer a 1 � 1

convolution is used to map each 64-component feature vector to two

classes. In total the network contains 19 convolutional layers. Convolu-

tional layers with 3� 3 kernel size are heavily used in our model.

Different from the basic architecture of the recent work (Ronneberger

et al., 2015), for the first two convolutional layers, kernel size 3� 3 is

Table 2

Parameters range used for data augmentation. The value range in column

Shearing indicates the shear angle. The value range in column scaling indicates the

scale factor.

Methods Rotation Shearing Scaling (x & y)

Parameters [-15�, 15�] [-18�, 18�] [0.9, 1.1]
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replaced with size 5� 5 in order to handle different transformations.

This is motivated by a recent study (Peng et al., 2017) suggesting that

large kernel size should be adopted in the network architecture. This step

could enable dense connections between feature maps and per-pixel

classifiers, enhancing the capability of a network to handle different

transformations.

3.2.2. Dice loss

In the task of WMH segmentation, the numbers of positives and

negatives are highly unbalanced. One of the solutions to tackle this issue

is to use Dice loss (Milletari et al., 2016) as the loss function for training

the model. The formulation is as follows.

Let G¼ {g1, …, gN} be the ground-truth segmentation probabilistic

maps (gold standard) over N slices, and P¼ {p1, …, pN} be the predicted

probabilistic maps over N slices. The Dice loss function can be expressed

as:

DL ¼ �
2
PN

n¼1

�

�pn ∘ gn
�

�þ s
PN

n¼1ðjpnj þ jgnjÞ þ s
(6)

where ∘ represents the entrywise product of two matrices, and j �j rep-

resents the sum of the entries of matrix. The s term is used here to ensure

the loss function stability by avoiding the division by 0, i.e., in a case

where the entries of G and P are all zeros. s was set to 1 in our

experiments.

3.3. Ensemble FCNs

Ensemble techniques are helpful to reduce over-fitting problems

of a complex model on the training data (Opitz and Maclin, 1999). It

combines multiple learning models to obtain better predictive per-

formance than any of the constituent learning algorithms alone.

There exists various work using ensembles of deep learning models

in computer vision and medical image analysis. Krizhevsky et al.

(2012) and Simonyan and Zisserman (2014) achieved top perfor-

mance in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) 2012 and 2014 by averaging multiple deep CNNs with

same architectures. He et al. (2016) won the first place with an

ensemble of six Residual Networks with different depths in ILSVRC

(2015). Kamnitsas et al. (2017a) won the brain tumor segmentation

challenge (BraTs) 2016 by aggregating different segmentation net-

works. In this work, we propose to address the automated WMH

segmentation problem by an ensemble approach to combine several

models with same architecture in a carefully designed pipeline. We

further show the effectiveness of the ensemble model via a quanti-

tative analysis in Sections 5.6 and 5.7.

The intention to use ensemble models includes two aspects: 1)

different models could learn different attributes of the training data

during the batch learning processing, thus the ensemble of them could

boost the segmentation results; 2) bias-variance trade-off. Assume that

network model error is due to bias and variance. If the variance of model

decrease, then the overall error would likely decrease. Here we aimed to

lower the variance by averaging the model outputs. A FCN with millions

of parameters, over-trained on different bootstrapped/subsampled

training sets would qualify for unbiased and highly variant models. We

further discussed in Section 5.6 that ensemble model served as the typical

bias-variance trade-off.

As shown in Fig. 5, n U-Net models with same architecture are trained

with random parameter initialization and shuffled data in the batch

learning. For each of the n U-Net models, when given a test image, a

Fig. 3. An example of data augmentation result. From left to right: the original axial slice, slice after rotation, slice after shear mapping and slice after scaling.

Fig. 4. 2D Convolutional Network Architecture. It consists of a shrinking part (left side) and an expansive part (right side) to detect and locateWMH respectively. The

input includes FLAIR and T1 channel.
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probability segmentation map will be generated by that model. Then the

resulting n maps will be averaged. Finally an empirically-picked

threshold will be used to transform the scores map into a binary seg-

mentation map.

3.4. Post-processing

The post-processing includes two aspects: 1) cropping or padding the

segmentation maps with respect to the original size, i.e., an inverse

operation to the step described in Section 3.1; 2) removing some

anatomically unreasonable artefact in the axial slices. For the purpose of

removing unreasonable detections (e.g., WMHwill not appear in the first

few axial slices containing neck and last few axial slices containing skull),

we employed a simple strategy: if there exists detected WMH in the first

m slices and last n ones of a brain along the z-direction, then the WMH

regions were considered as false positive and would be removed.

Empirically, m and n were set to 10% of the number of slices for each

scan. The codes and models of the proposed system is made publicly

available in GitHub.5

4. Results

In this section we report the segmentation performances on both the

public training dataset and the held-out test set and compare to other

teams' methods presented during the challenge. Detailed segmentation

results of the 20 teams on the 110 secret cases are available in the

following url: http://wmh.isi.uu.nl/results/.

For reported results, the binary segmentation maps were evaluated

using the five metrics described in Section 2: dice similarity coefficient,

Hausdorff distance (95p), averaged volume difference, lesions recall and

lesions F1-score. The U-Net hyper parameters were set as follows: batch

size for computing the training loss was set to 30; learning rate was set to

0.0002; the number of epochs was set to 50. The number of models in the

ensemble was set to 3. Section 5.2 further evaluates and analyses the

effects of some key parameters on segmentation performance.

4.1. Results on held-out test dataset

The proposed system was announced to be the winning method of the

challenge after being independently tested on 110 hidden cases from 5

scanners by the organizers. The overall ranking was based on the average

of the rank scores computed for each metric. For the testing stage, deep

fully convolutional networks were learned on the whole public training

dataset consisting of 60 cases. Table 3 shows the segmentation perfor-

mance of our submitted system on the held-out test set with its 5 subsets,

each containing cases from the different scanners and sites. Table 4

compares our method to other top performing teams. Notably, the top-5

methods all used deep learning techniques, briefly described in Table 5.

The proposed FCN ensemble achieved, on average, the highest dice

similarity coefficient, smallest Hausdorff distance and best lesion recall.

For the 20 cases from unseen scanners AMS GE1.5T and AMS PETMR, our

method achieved the highest lesion recalls of 90% and 84% respectively.

We will discuss in Section 5 how each key component of our method,

especially the model ensemble, contributes to the improvement on the

generalization capability.

4.2. Leave-one-subject-out evaluation on public training dataset

To test the generalization performance of our system across different

subjects, we conducted an experiment on the public training datasets (60

subjects) in a leave-one-subject-out setting. Specifically, we used the

subject IDs to split the public training dataset into training and validation

sets. There were 60 different subjects available. In each split, we used

slices from 59 subjects for training, and the slices from the remaining

subject for testing. This procedure was repeated until all of the subjects

are used as testing.

Fig. 6 plotted the distributions of segmentation performances on

scans from the three scanners, with each sub-figure showing perfor-

mances using one of the five metrics. It could be observed that the seg-

mentation performance on Utrecht was relatively poor. A few outliers

(hard examples) were found in Utrecht which appeared to contain

Fig. 5. Overall framework for the testing stage.

Table 3

Results of our method on the heldout sets from the five different scanners. ↓

indicates that smaller value represents better performance. The last row shows

the rank scores of our method w.r.t the 20 teams for each of the five metrics, with

0¼ best, and 1¼worst.

Scanners DSC H95 ↓ AVD ↓ Recall F1

Utrecht (n ¼ 30) 0.80 7.22 18.35 0.81 0.72

Singapore (n ¼ 30) 0.83 4.50 19.95 0.85 0.78

GE3T (n ¼ 30) 0.79 4.04 24.46 0.83 0.79

AMS GE1.5T (n ¼ 10) 0.77 10.24 36.86 0.90 0.80

AMS PETMR (n ¼ 10) 0.72 11.84 15.54 0.84 0.65

weighted average 0.80 6.30 21.88 0.84 0.76

rank scores [0–1] 0.000 0.000 0.004 0.000 0.0345 https://github.com/hongweilibran/wmh_ibbmTum.
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relatively more small lesions and blurred slices after checking the orig-

inal slices and segmentation results. Section 5 presents a further analysis

of these outliers, revealing the challenge of WMH segmentation task. In

general, the averaged dice similarity coefficient, Hausdorff distance and

lesion recall achieved by the proposed system on 60 cases were 87%,

3.6 mm and 85%, respectively. This shows its effectiveness in aspects of

overlapping, localization accuracy and overall lesion detection. Table S1

in the supplemental material reports extensive results allowing compar-

ison on every case of the public training dataset.

4.3. Cross-scanner evaluation

To further evaluate the generalization performance to unseen scan-

ners, firstly we presented a study of cross-scanner analysis on public

training set containing 60 cases from three scanners. Then we directly re-

ranked and compared the cross-scanner segmentation performance of all

teams' methods on the two unseen scanners.

For the cross-scanner analysis, we used the scanner IDs to split the 60

cases into training and test sets. In each split, the slices of 40 subjects

from two scanners were used as training set while the slices of 20 subjects

from the remaining scanner were used for validation set. This procedure

was repeated until all the scanners are used as validation set. For

comparing the cross-scanner performance with other state-of-the-art

methods, we calculated averaged performances of all teams on the two

unseen scanners AMS GE1.5T and AMS PETMR. Then each team's ranking

score was calculated using the same rank method introduced in Section

2.3.

Fig. 7 plots the distributions of segmentation performances on cases

from each scanner being tested in turn, with each sub-figure showing

performances using one of the five metrics. In general, for every 20 cases

from each of the three testing scanners in the cross-scanner evaluation,

the segmentation result between each other was comparable, showing

our system is robust to unseen scanners. It could be observed that the

segmentation performance on dataset GE3T was relatively poor. This

could be explained that the voxel size of cases in GE3T has a significant

difference from that captured by two other scanners. Combination of

modalities will be discussed in Section 5.3 Table 6 compares the seg-

mentation performances of the top performing teams on two unseen

scanners. Our method achieved, on average, the best Dice similarity

coefficient and lesion recall of 74.5% and 87% respectively and runner-

ups on other three metrics.

5. Discussion

In this section, we further present relevant results obtained on the

training data and that impacted on our design choices.

Table 4

Performance of top-5 methods among the 20 teams. The cells in gray shading

indicate the best segmentation performance on each metric. The overall ranking

is based on the average of the rank scores on each metric as shown in last row of

Table 3. ↓ indicates that smaller value represents better performance.

Teams Rank/score DSC H95↓ AVD↓ Recall F1

Ours 1/0.038 0.80 6.30 21.88 0.84 0.76

cian 2/0.181 0.78 6.82 21.72 0.83 0.70

nlp logix 3/0.243 0.77 7.16 18.37 0.73 0.78

nih cidi 2 4/0.302 0.76 7.02 27.98 0.81 0.70

nic� vicorob 5/0.369 0.77 8.28 28.54 0.75 0.71

Table 5

Brief description of top-five methods.

Team Names Brief Description of Methods

sysu mediaðoursÞ Fully convolutional network ensembles.

cian Multi-dimensional gated recurrent units based on recurrent neural

networks.

Nlplogix Two densely connected deep convolutional neural networks.

nih cidi_2 Traditional deep fully convolutional neural network and graph

refinement.

nic� vicorob A cascade of three convolutional neural networks.

Fig. 6. Box plots of leave-one-subject-out evaluation on the public training data. Each box plot summarizes the segmentation performance on images from one scanner

using one specific metric.
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5.1. Why choose 2D architecture

It is noted that there exist several 3D convolutional network archi-

tectures for brain tumor segmentation (Kamnitsas et al., 2017b; Havaei

et al., 2017). The main motivation of employing 3D architectures is to

extract rich spatial and contextual information from tumor/lesion tis-

sue volume. However, in case of WMH segmentation, small lesions with

high discontinuity and low contrast are commonly found, which

contain poor spatial and contextual information. Furthermore, the im-

aging resolution along z-direction of the contest images is rather poor,

and there exists large variation of spatial resolution as shown in Table 1,

which further restricts the use of 3D deep learning models. Fig. 8 shows

the case 11 in dataset Utrecht, in which small lesions with discontinuity

characteristic are observed. Therefore a 2D architecture is chosen for

this challenge to explore the texture information at slice level, and to

drastically reduce the computational complexity. Data augmentation

further equips the 2D model with desired invariance and robustness. It

should be acknowledged that, when large clinical datasets are available

in future, 3D architectures might help to improve the segmentation

performance.

5.2. Analysis of U-Net hyper parameters

An appropriate parameter setting is crucial to successful training of

deep fully convolutional networks. Here we mainly discuss some hyper

parameters including the number of epochs, size of batch training and

learning rate.

We selected the number of epochs for stopping training by contrasting

training loss and validation loss over epochs. We split the public training

dataset into a training set and a validation set by randomly picking 80%

and the remaining 20% cases from each scanner respectively. Thus in

total, the models were trained on 48 cases and validated on 12 cases.

Fig. 9 shows the curves of training and validation loss over 100 epochs. It

could be observed that the validation loss did not show a descending

trend at around 50 epochs. The reason to choose 50 epochs rather than a

higher one is 1) to avoid over fitting on the training data, and 2) keep low

computational cost.

The size of batch and learning rate have a large influence on the

stability of the training process. To our empirical observation, if the

learning rate was set to values bigger than 10-3, the training loss would be

suddenly reaching to nearly 0 (i.e., the worst performance) at some

beginning epoch and would remain not updating the training loss. Both

of the batch size and learning rate directly influence the magnitude of the

gradient and sometimes will lead to a gradient exposure issue. Therefore

the batch size was set to 30 and learning rate was set to 0.0002

throughout all of the experiments.

5.3. Influence of imaging modalities

The T1 modality is known to provide a good contrast between the

healthy tissues of the brain while FLAIR sequences are widely used to

distinguish pathologies present in the white matter. Based on this, we

assumed that these two modalities can provide complementary infor-

mation for segmenting WMH. According to previous work (Dyrby et al.,

2008), a combination of FLAIR and other modalities significantly

Fig. 7. Box plots of cross-scanner evaluation on the public training data. Each box plot summarizes the segmentation performance on subject from three testing

scanners using one specific metric. For example, for box plot Utrecht in the upper left figure, it shows the distribution of segmentation results on Utrecht when training

the model by using data from two other scanners - Singapore and GE3T.

Table 6

Performance on two unseen scanners of top-5 methods among the 20 teams. The

cells in gray shading indicate the best segmentation performance on each metric.

The overall ranking is based on the average of the rank scores on each metric as

shown in last row of Table 3. ↓ indicates that smaller value represents better

performance.

Teams Rank/score DSC H95↓ AVD↓ Recall F1

Ours 1/0.040 0.745 11.04 26.2 0.87 0.725

nih cidi 2 2/0.234 0.705 9.745 21.94 0.79 0.685

cian 3/0.264 0.745 14.10 28.425 0.82 0.665

nic� vicorob 4/0.374 0.715 13.53 56.31 0.815 0.62

nlp logix 5/0.408 0.685 12.98 27.9 0.665 0.73
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improved the segmentation performance than using FLAIR alone. How-

ever, whether this combination improves the generalization capability to

unseen scanner, has not been clearly investigated. We therefore analysed

and presented a novel study for comparison in a cross-scanner-evaluation

manner.

Table S2 to Table S4 in supplemental material report extensive

results. They show that the combination of FLAIR and T1 slightly

outperformed FLAIR alone on most of the metrics, suggesting T1

modality could provide useful information for detecting WMH. In

Fig. 10 we showed the segmentation results of a case from Singapore

tested by the model trained on Utrecht and GE3T. We observed that

some false negatives were removed by using the combination of FLAIR

Fig. 8. Case 11 from the public training set shows the high discontinuity. From top to down, slices and corresponding ground-true segmentation maps. From left to

right: axial slices from 22 to 26 and the corresponding ground truth.

Fig. 9. Curves of training and validation loss and segmentation performance of each metric over epochs.
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and T1 after comparing the column SegFLAIRþT1 and SegFLAIR, sug-

gesting T1 provided complementary information on judging WMH. We

further performed Wilcoxon signed rank test on the 60 cases. The

improvements on H95 and F1-score were significant, giving p-values

smaller than 1� 10�4.

5.4. Influence of data augmentation

The intention of data augmentation is generating training samples

with different distributions to teach network learning desired invariance

and robustness. We evaluated this technique using the cross-scanner

evaluation as discussed in Section 5.3. The same experimental setting

was used.

Table S5 to Table S7 in supplemental material report extensive

results. They show that using data augmentation slightly improved

segmentation results on most of the metrics. Fig. 11 shows the seg-

mentation results of a case from Utrecht tested by the model trained on

Singapore and GE3T. We observed that some false positives with small

Fig. 10. Segmentation result on Singapore 34. From top to bottom: four axial slices of the same subject. From left to right: FLAIR MR images, the associated ground

truth, segmentation result using FLAIR modality only and segmentation result using FLAIR and T1 modalities. In column SegFLAIR and SegFLAIRþT1, the green area is the

overlap between the segmentation maps and the ground-truth, the red pixels are the false negatives and the black ones are the false positives. (Best viewed in colour).
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volumes were removed by employing data augmentation after

comparing the column SegwithoutDA to SegwithDA, suggesting the model

achieved robustness to small lesions. We further performed Wilcoxon

signed rank test on the 60 cases. The improvements on H95, Recall

and F1-score are statistically significant, giving p-values smaller than

1� 10�4.

5.5. Adaptability to different scanners

To ensure the usability of the proposed system in real world practice,

which involves imaging data from various scanners and protocols, we

evaluated its adaptability to imaging data across scanners. Extensive

experiments were conducted by comparing the segmentation perfor-

mances between models trained on either a single scanner or multiple

ones.

Firstly, three sub-datasets from three scanners were evaluated

independently. For example, 20 subjects from Utrecht were split into

training set and test set, and each subject was evaluated using the

leave-one-subject-out evaluation introduced in Section 4.2. Then the

segmentation performance on each subject was compared to the one

achieved by model trained on additional data from other two scanners.

This comparison allows us to see the adaptability of the system.

Fig. 12 shows box plots of performances on each dataset. Interest-

ingly, we observed that, on four metrics - dice similarity coefficient,

Hausdorff distance (95p), average volume difference and lesion F1-score, the

model trained on three scanners achieved significant improvement over

the one trained on single scanner. However, on lesion recall, the model

trained on single scanner gained slightly better segmentation

Fig. 11. Sample segmentation result on Utrecht 04. From top to bottom: four axial slices of the same subject. From left to right: FLAIR MR images, the associated

ground truth, segmentation result without using data augmentation and segmentation result with data augmentation. In column SegwithoutDA and SegwithDA, the green

area is the overlap between the segmentation result and the ground truth, the red ones are the false negatives, and the black ones are the false positives. (Best viewed

in colour).
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Fig. 12. Box plots of model adaptability evaluation. For example, the box plot in the left of first row shows two dice score distributions generated by two models

trained on Utrecht only and Utrecht with additional data from other two scanners, respectively. From top to down: comparison of segmentation result on five metrics

respectively. From left to right, comparison of segmentation result on Utrecht, Singapore and GE3T respectively.
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performance. This was due to the decrease of the number of undetected

small lesions. We concluded that the network trained on the larger data

set that included cases obtained from different scanners shows better

prediction performance, but at the cost of a sensitivity towards small

lesions that were still detected best by networks trained on scanner- or

sequence-specific data.

5.6. Effect of the size of ensembles

Ensemble learning aims at aggregating different models to boost the

segmentation performance. The optimal size of an ensemble, i.e., how

manymodels in the ensemble are needed, still remains an open issue and,

as in many related ensemble learning task, a task specific parameter that

needs to be optimized. To this end, we evaluated how the segmentation

performance behaves over the number of ensemble models. We split the

public dataset into training set and validation set by randomly picking

80% and 20% cases from each scanner respectively. The models were

trained on 48 cases and validated on 12 cases. Then the segmentation

performance on 12 cases were averaged on each evaluation metric. For

each model with different size of ensembles, the training process was

repeated five times and the segmentation results on the validation set

were averaged.

Fig. 13. Segmentation performance on validation set w. r.t ensemble size. The horizontal axis represents the number of models in the ensemble. We used an ensemble

of three models in our final submission to the challenge.

Fig. 14. The standard deviation of segmentation performance on validation set w. r.t ensemble size. We observed that the variation of segmentation performance was

reduced when the size was increased.
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Fig. 13 shows the curves of segmentation performance on five metrics

w. r.t different ensemble size. It could be seen that (1) the ensemble with

three or more models clearly outperformed the ensemble of only one

model on all of the five metrics. The improvement of ensemble model

with size 5 over one with size 3 is statistically significant on five metrics,

all with small p-values; (2) when the size was further increased, perfor-

mance tended to saturate and minor improvements in some of the

measures came at the cost of small decreased in others. Fig. 14 shows

standard deviation of segmentation performance between five repeated

trained models w. r.t different ensemble size. It could be observed that

the variation of segmentation performance was reduced on the main

evaluation metrics when the size of ensemble was increased. It demon-

strated that the ensemble model can not only boost the segmentation

performance but also guarantee a robust segmentation result. Fig. 15

shows a case segmented by three individual models and their ensemble.

We observed that three models trained with different weights initiali-

zations and shuffled data generated significantly different result on

boundary and small lesions. And the model ensemble avoided the worst

segmentation result.

5.7. Statistical analysis

5.7.1. Contribution of each component

We investigated in depth the contribution of each component using

statistical analysis. Specifically, the performance of the proposed

framework with and without a specific component was compared sta-

tistically as detailed below. For each of these comparisons, the public

training dataset (from 60 patients) was first split into a training set and a

validation set with a ratio of 4:1, resulting in a set of 48 training cases and

a set of 12 validation cases. Then the proposed framework without a

specific component was trained on the 48 training cases and evaluated on

each of the 12 validation cases w. r.t each of the five organizer-provided

evaluation metrics. The same protocol was also aplied to evaluate the

complete proposed framework (i.e., without removing any component).

Then for each metric, Wilcoxon signed rank test was adopted to test the

statistical significance of the difference between the proposed framework

with and without a specific component based on their validation perfor-

mance. Since the comparisons were under a setting of multiple hypoth-

esis testing, the p-values obtained for those five metrics were further

adjusted by controlling the false discovery rate (PDR) for these hypoth-

esis tests using the procedure proposed by Benjamini and Hochberg

(1995). Table 7 summarizes the contributions of each component in the

framework as well as PDR-adjusted p-values of the test. It could be

observed that preprocessing, data augmentation and ensemble model have

consistent improvements on all of the five metrics. In particular, all the

improvements of using data augmentation show statistical significance

with very small p-values. On two metrics (H95 and AVD), the improve-

ments of preprocessing are statistically significant. Similarity, the use of

ensemble improves the performances on all the five metrics, among

which, three (DSC, H95, AVD) are statistically significant. The use of the

two modalities improves the performances on four metrics although no

improvement was observed on AVD metric.

Overall, the combination of these framework components helps build

the state-of-the-art WMH segmentation system and differentiates our

entry from other entries in the WMH segmentation competition.

5.7.2. Best-performing model vs ensemble model

In practise, compared to the use of the ensemble for testing, one

Fig. 15. Detailed segmentation results of three models and the ensemble. Columns Seg1, Seg2, Seg3 and Segoverall represent the segmentation result generated by model

1, model 2, model 3 and their ensemble. The green area in column Seg1, Seg2, Seg3 and SegOverall is the overlap between the segmentation result and ground truth. The

red ones are the false negatives while the black ones are the false positives. For better visualization, the regions inside the smaller yellow bounding box are zoomed

into the larger bounding box.
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alternative approach is to selected a model from the ensemble, which

performs the best on the validation set as the candidate model for

testing. We refer this model as a best-performingmodel. Here, we further

compared the performances of best-performing model based on Dice

loss and ensemble model. Specifically, the public training dataset (60

cases) was split into a training set, a validation set and a test set with a

ratio of 3:1:1, resulting in 36 training cases, 12 validation cases and 12

test cases. We trained five models with different initializations, and

selected the best-performing model based on the validation loss on the

validation set. Then the performance of the best-performing model and

the ensemble of the 5 models were compared on the test set. The

averaged results on 12 test cases as well as the adjusted p-values of the

Wilcoxon signed rank test after controlling the false discovery rate are

shown in Table 8. It shows that ensemble model outperforms single

best-performing model on four metrics (significantly on Dice score and

lesion F1-score).

5.8. Computational complexity

All of the experiments were conducted on a GNU/Linux server

running Ubuntu 16.04, with 32 GB RAM memory. The number of

trainable parameters in the proposed model with two-channel inputs

(FLAIR & T1) is 8,748,609. The algorithms were trained on a single

NVIDIA Titan-Xp GPU with 12 GB RAM memory. It takes around

180 min to train a single model for 50 epochs on a training set con-

taining 10,000 images of size 200 � 200 each. For testing, the seg-

mentation of one scan with 48 slices by an ensemble of three models

takes around 60 s using a Intel Xeon CPU (E3-1225v3) (without the use

of GPU). In contrast, the segmentation per scan takes only 8 s when

using a GPU.

6. Conclusions

In this paper we describe in detail our winning entry for MICCAI-2017

WMH Segmentation Challenge. To investigate the contribution of each

component of our system, we empirically study the effects of imaging

modalities and data augmentation as well as ensemble size used in the

system training that all contributed to the performance of our segmen-

tation model. We found that (1) FLAIR and T1 imaging modalities pro-

vide complementary information to judgeWMH; (3) the proposed system

shows good adaptability on various scanners and protocols; (4) ensemble

model helps to reduce over-fitting and boost segmentation results. They

are important factors to consider in building state-of-the-art WMH

segmentation systems with good generalization capability. The methods

employed by the top-5 teams in the challenge are all deep-learning

models, suggesting deep-learning techniques especially convolutional

networks show high efficacy in WMH segmentation. Although the seg-

mentation results on 110 secret cases show its potential for real-world

clinical use, the detection of small-volume WMH in MR images remains

a challenging problem and is a future direction for the upcoming research

in automated WMH segmentation. Some interesting architecture which

learns context information between slices Chen et al. (2016) could be

further investigated in future work. It will be interesting to discuss how

segmentation difference between the algorithm and doctors will affect

the clinical adoption, and how to address such a difference. This will

need to test the algorithm in a clinical setting and get further feedback

from radiologist and related therapist, which will be an interesting task in

future work. Note that our brain intensities are normalized based on all of

the voxels within the brain in order to calibrate intensities across scan-

ners. Since patients have varying amount of (hyper-intense) diseases,

which may bias the mean intensities used in the normalization. To alle-

viate this bias, robust measures can be used, such as robust mean or

median absolute deviance. Alternatively, the lesion segmentation can be

iterated and lesion areas identified in the first iteration are excluded in

the normalization in the next iteration. We make our Python segmenta-

tion code available in GitHub.
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Abstract

In the last two decades, neuroscience has produced intriguing evidence for a cen-

tral role of the claustrum in mammalian forebrain structure and function. How-

ever, relatively few in vivo studies of the claustrum exist in humans. A reason for

this may be the delicate and sheet-like structure of the claustrum lying between

the insular cortex and the putamen, which makes it not amenable to conventional

segmentation methods. Recently, Deep Learning (DL) based approaches have

been successfully introduced for automated segmentation of complex, subcortical

brain structures. In the following, we present a multi-view DL-based approach to

segment the claustrum in T1-weighted MRI scans. We trained and evaluated the

proposed method in 181 individuals, using bilateral manual claustrum annotations

by an expert neuroradiologist as reference standard. Cross-validation experi-

ments yielded median volumetric similarity, robust Hausdorff distance, and Dice

score of 93.3%, 1.41 mm, and 71.8%, respectively, representing equal or superior

segmentation performance compared to human intra-rater reliability. The leave-

one-scanner-out evaluation showed good transferability of the algorithm to

images from unseen scanners at slightly inferior performance. Furthermore, we

found that DL-based claustrum segmentation benefits from multi-view informa-

tion and requires a sample size of around 75 MRI scans in the training set. We

conclude that the developed algorithm allows for robust automated claustrum

segmentation and thus yields considerable potential for facilitating MRI-based

research of the human claustrum. The software and models of our method are

made publicly available.
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1 | INTRODUCTION

The claustrum is a highly conserved gray matter structure of the mam-

malian forebrain, situated in the white matter between the putamen

and the insular cortex, more precisely between the external and the

extreme capsule (Kowia�nski, Dziewiątkowski, Kowia�nska, &

Mory�s, 1999; Puelles, 2014). Although first described by Félix Vicq

d'Azyr in the late 18th century, it has remained one of the most enig-

matic structures of the brain (Johnson & Fenske, 2014). In a seminal

article by Sir Francis Crick and Christof Koch, they proposed a role of

the claustrum for processes that give rise to integrated conscious per-

cepts (Crick & Koch, 2005), which has spurred new interest in the

claustrum and its putative function. From animal and human studies,

we know that the claustrum is the most widely connected gray matter

structure in the brain in relation to its size, being connected to both

the ipsilateral and the contralateral hemisphere (Mathur, 2014; Pear-

son, Brodal, Gatter, & Powell, 1982; Reser et al., 2017; Torgerson,

Irimia, Goh, & Van Horn, 2015; Zingg et al., 2014; Zingg, Dong, Tao, &

Zhang, 2018). It is reciprocally connected to almost all cortical regions

including motor and somatosensory as well as visual, limbic, auditory,

associative, and prefrontal cortices, and receives neuromodulatory

input from subcortical structures (Goll, Atlan, & Citri, 2015; Torgerson

et al., 2015). While the claustrum's exact function remains elusive,

recent evidence suggests a role in basic cognitive processes such as

selective attention or task switching (Brown et al., 2017;

Mathur, 2014; Remedios, Logothetis, & Kayser, 2010, 2014). A rather

new but equally interesting perspective on the claustrum is its unique

ontogeny and a link to so-called subplate neurons, which have been

proposed to play a role in neurodevelopmental disorders such as

schizophrenia, autism, and preterm birth (Bruguier et al., 2020;

Hoerder-Suabedissen & Molnár, 2015; Watson & Puelles, 2017).

Most human in vivo studies using MRI to investigate the claus-

trum suffer from small sample sizes (Arrigo et al., 2017; Krimmel

et al., 2019; Milardi et al., 2015) since the sheet-like and delicate

anatomy of the claustrum precludes classic atlas-based segmenta-

tion methods and is challenging for statistical shape models and tra-

ditional machine learning methods (Aljabar, Wolz, &

Rueckert, 2012; Heimann & Meinzer, 2009). Consequently, manual

annotation has typically been necessary, which is notoriously time-

consuming, requires expert knowledge, and is not feasible to be

applied in large-scale studies of the human brain (Arrigo

et al., 2017; Milardi et al., 2015; Torgerson & Van Horn, 2014).

Thus, to promote our understanding of the claustrum in

humans, an objective and accurate, automated, MRI-based segmen-

tation method is needed. As mentioned before, the claustrum is not

included as a region of interest (ROI) in most MR-based anatomic

atlases of the brain. In fact, only BrainSuite, which is a tool for auto-

mated cortical parcellation and subcortical segmentation based on

surface-constrained volumetric registration of individual MR images

of the brain to a manually labeled atlas, contains the claustrum as a

ROI (Joshi, Shattuck, Thompson, & Leahy, 2007). However, this

method has been shown to be rather unreliable, most likely due to

the challenging anatomy of the claustrum (Berman, Schurr, Atlan,

Citri, & Mezer, 2020). Very recently, an automated, rule-based

method using anatomical landmarks for claustrum segmentation

has been published and showed improved segmentation accuracy

compared to BrainSuite but still only less accuracy in comparison

with manual annotations (Berman et al., 2020). In conclusion, there

is still the need for improved fast and reproducible, automated seg-

mentation of the claustrum in order to enable its exploration in

large MRI studies.

In recent years, computer vision and machine learning techniques

have been increasingly used in the medical field, pushing the limits of

segmentation methods relying on atlases, statistical shape models and

traditional machine learning approaches (Aljabar et al., 2012; Aljabar,

Heckemann, Hammers, Hajnal, & Rueckert, 2009; Heimann &

Meinzer, 2009). Particularly, deep learning (DL) (LeCun, Bengio, &

Hinton, 2015) based approaches have shown promising results on

various medical image segmentation tasks, for example, brain struc-

ture and tumor segmentation in MR images (Chen, Dou, Yu, Qin, &

Heng, 2018; Kamnitsas et al., 2017; Prados et al., 2017; Wachinger,

Reuter, & Klein, 2018). Recent segmentation methods commonly rely

on so-called convolutional neural networks (CNNs). Applied to seg-

mentation tasks, these networks “learn” proper structural information

from a set of manually labeled data serving as ground truth for train-

ing. In the testing stage, CNNs perform automated segmentation on

unseen images yielding rather high accuracies even for tiny structures

such as white-matter lesions (Li et al., 2018). Recently, a clustering-

based approach was proposed to segment the dorsal claustrum

(Berman et al., 2020) and achieved <60% Dice coefficient when com-

pared with manual segmentations. Yet DL-based approaches, which

leverage large-scale datasets, have not been explored and can poten-

tially improve segmentation accuracy.

Thus, we hypothesized that DL-based techniques used to seg-

ment the claustrum can fill the existing gap. Based on a large number

of manually annotated, T1-weighted brain MRI scans, we propose a

2D multi-view framework for fully automated claustrum segmenta-

tion. In order to assess our central hypothesis, we will evaluate the

segmentation accuracy of our algorithm on an annotated dataset

using three canonical evaluation metrics and compare it to intrarater

variability. Further, we will investigate whether multi-view informa-

tion significantly improves the segmentation performance. In addition,

we will address the questions of robustness against scanner type and

how increasing the training set affects segmentation accuracy. To

foreshadow results, we found robust, reliable, and stable claustrum

segmentation based on our DL algorithm, which we make publicly

available using an open-source repository: https://github.com/

hongweilibran/claustrum_multi_view.

2 | MATERIALS AND METHODS

2.1 | Datasets

In the following two sections, we describe the datasets and evaluation

metrics used in this study. T1-weighted three-dimensional scans of
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181 individuals without known brain injury were included from the

Bavarian Longitudinal Study (Hedderich et al., 2019). The study was

carried out following the Declaration of Helsinki and was approved by

the local institutional review boards. Written consent was obtained

from all participants. The MRI acquisition took place at two sites: The

Department of Neuroradiology, Klinikum rechts der Isar, Technische

Universität München (n = 120) and the Department of Radiology,

University Hospital of Bonn (n = 61). MRI examinations were per-

formed at both sites on either a Philips Achieva 3 T or a Philips Ingenia

3 T system using 8-channel SENSE head-coils.

The imaging protocol includes a high-resolution T1-weighted, 3D-

MPRAGE sequence (TI = 1300 ms, TR = 7.7 ms, TE = 3.9 ms, flip

angle 15
�

; field of view: 256 mm � 256 mm) with a reconstructed iso-

tropic voxel size of 1 mm3. All images were visually inspected for arti-

facts and gross brain lesions that could potentially impair manual

claustrum segmentation (Table 1).

2.2 | Preprocessing

Before manual segmentation, the images are skull-stripped using

ROBEX (Iglesias, Liu, Thompson, & Tu, 2011) and denoised with spa-

tially adaptive nonlocal means (Manj�on, Coupé, Martí-Bonmatí, Col-

lins, & Robles, 2010) to enhance the visibility of the claustrum.

Manual annotations were performed by a neuroradiologist (D.M.H.)

with 7 years of experience using a modified segmentation protocol

(Davis, 2008) in ITK-SNAP 3.6.0 (Yushkevich et al., 2006). In brief, the

claustrum was segmented in axial and coronal orientations, including

its dorsal and ventral division at individually defined optimal image

contrast for differentiation of gray and white matter. First, the claus-

trum was delineated on axial slices at the basal ganglia level, where it

is visible continuously. Second, the claustrum was traced inferiorly

until it was no longer visible. Consecutively, the claustrum was traced

superiorly until its superior border. Notably, the superior parts of the

claustrum are usually discontinuous below the insular cortex. Then,

the axial annotations were checked and corrected (if necessary) using

coronal views. This process is essential for the claustrum parts exten-

ding below the putamen and the ventral claustrum extending to the

stem of the temporal lobe.

An additional preprocessing step is performed on top of the basic

preprocessing steps carried out by the rater. We aim to normalize the

voxel intensities to reduce the variations across subjects and scanners.

Thus, a simple yet effective preprocessing step is used in both training

and testing stages. It includes two steps: (1) cropping or padding each

slice to a uniform size and (2) z-score normalization of the brain voxel

intensities. First, all the axial and coronal slices are automatically

cropped or padded to 180 � 180 to guarantee a uniform input size

for the deep-learning model. Next, z-score normalization is performed

for individual 3D scans. The mean and standard deviation are calcu-

lated based on the intensities within each individual's brain mask.

Finally, the voxel intensities are rescaled to a mean of zero and unit

standard deviation (Figure 1).

2.3 | Multi-view fully convolutional neural

networks

2.3.1 | Multi-view learning

When performing manual annotations, neuroradiologists rely on

axial and coronal views to identify the structure. Thus, we hypoth-

esized that the image features from the two geometric views

would be complementary to locate the claustrum and would be

beneficial for reducing false positives on individual views. We train

two deep CNN models on 2D single-view slices after parsing a 3D

MRI volume into axial and coronal views. The sagittal view is

excluded because we find it does not improve segmentation

results. Further discussion is provided in Section 3.2. We propose a

practical and straightforward approach to aggregate the multi-view

information in probability space at a voxel-wise level during the

inference stage (see Figure 2a). We train two single-view models

on the 2D image slices from axial and coronal views, respectively.

During the testing stage, we predict the single-view segmentation

mask and fuse the multi-view information by averaging the voxel-

wise probabilities.

2.3.2 | Single-view 2D convolutional network

architecture

We built a 2D architecture based on a recent U-shape network (Li

et al., 2018; Ronneberger, Fischer, & Brox, 2015) and tailored it for

the claustrum segmentation task. The network architecture is delin-

eated in Figure 2. It consists of a down-convolutional part that shrinks

the spatial dimensions (left side), and an up-convolutional part that

expands the score maps (right side). Skip connections between down-

convolutional and up-convolutional are used. In this model, two con-

volutional layers are repeatedly employed, followed by a rectified

TABLE 1 Characteristics of the

dataset in this study
Datasets Scanner name Voxel size (mm3) Number of subjects

Bonn-1 Philips Achieva 3 T 1.00 � 1.00 � 1.00 15

Bonn-2 Philips Ingenia 3 T 1.00 � 1.00 � 1.00 46

Munich-1 Philips Achieva 3 T 1.00 � 1.00 � 1.00 103

Munich-2 Philips Ingenia 3 T 1.00 � 1.00 � 1.00 17

Note: The dataset consists of 181 subjects from four scanners and two centers.
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linear unit (ReLU) and a 2 � 2 max pooling operation with stride 2 for

down-sampling. At the final layer, a 1 � 1 convolution is used to map

each 64-component feature vector to two classes. In total, the

network contains 16 convolutional layers. The network takes the

single-view slices of T1 modality scans as the input during training

and testing (see Figure 2b).

F IGURE 1 Examples of axial (a, b) and coronal (c, d) MR slices with corresponding manual annotation of the claustrum structure (in b and d)

by a neuroradiologist

F IGURE 2 (a) A schematic view of the proposed segmentation method using multi-view fully convolutional networks to segment the 3D

claustrum jointly; (b) 2D Convolutional network architecture for each view (i.e., axial and coronal). It takes the raw images as input and predicts its

segmentation maps. The network consists of several nonlinear computational layers in a shrinking part (left side) and an expansive part (right side)

to extract semantic features of the claustrum structure
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2.4 | Loss function

With respect to the claustrum segmentation task, the numbers of pos-

itives (claustrum) and negatives (nonclaustrum) are highly unbalanced.

One promising solution to tackle this issue is to use Dice loss

(Milletari, Navab, & Ahmadi, 2016) as the loss function for training the

model. The formulation is as follows.

Let G¼ g1,…,gNf g be the ground-truth segmentation maps over

N slices, and P¼ p1,…,pNf g be the predicted probabilistic maps over

N slices. The Dice loss function can be expressed as:

Dice Loss¼�
2
PN

n¼1 pn ∘gnj jþ s
PN

n¼1 pn þ gnj jj Þþ sjð

where ∘ represents the entrywise product of two matrices, and �j j

represents the sum of the matrix entries. The s term is used here to

ensure the loss function stability by avoiding the division by 0, that is,

in a case where the entries of G and P are all zeros. s is set to 1 in our

experiments.

2.5 | Anatomically consistent postprocessing

The postprocessing for the 3D segmentation result included:

(1) cropping or padding the segmentation maps concerning the origi-

nal size, that is, an inverse operation to the step described in Sec-

tion 2.3.1; (2) removing anatomically unreasonable artifacts. To

remove unreasonable segmentations (e.g., the claustrum does not

appear in the first and last slices which contain skull or other tissues),

we employed a simple strategy: if there is a claustrum structure

detected in the first m and last n ones of a brain along the z-direction,

they are considered false positives. Empirically, m and n are set to

20% of the number of axial slices for each scan. The codes and models

of the proposed method are made publicly available on GitHub.

2.6 | Parameter setting and computation

complexity

An appropriate parameter setting is crucial to the successful training

of deep convolutional neural networks. We selected the number of

epochs to stop the training by contrasting training loss and the perfor-

mance on validation set over epochs in each experiment, as shown in

Figure S2 in the Supplement. Hence, we choose a number of

N epochs to avoid over-fitting and to keep a low computational cost

by observing the VS and DSC on the validation set. The batch size

was empirically set to 30 and the learning rate was set to 0.0002

throughout all experiments by observing the training stability on the

validation set.

The experiments are conducted on a GNU/Linux server running

Ubuntu 18.04, with 64GB RAM. The number of trainable parameters

in the proposed model with one-channel inputs (T1) is 4,641,209. The

algorithm was trained on a single NVIDIA Titan-V GPU with 12GB

RAM. It takes around 100 min to train a single model for 200 epochs

on a training set containing 5000 images with a size of 180 � 180

pixels. For testing, the segmentation of one scan with 192 slices by an

ensemble of two models takes around 90 s using an Intel Xeon CPU

(E3-1225v3) (without GPU use). In contrast, the segmentation per

scan takes only 3 s when using a GPU.

2.7 | Evaluation metrics and protocol

Three metrics are used to evaluate the segmentation performance in

different aspects in the reported experiments. For example, given a

ground truth segmentation map G and a predicted segmentation map

P generated by an algorithm, the evaluation metrics are defined as

follows.

2.7.1 | Volumetric similarity (VS)

Let VG and VP be the volumes of region of interests in G and P,

respectively. Then the volumetric similarity (VS) in percentage is

defined as:

VS¼1�
jVG�VP j

jVGþVP j

2.7.2 | Hausdorff distance (95th percentile) (HD95)

H G,Pð Þ¼max sup
x � G

inf
y � P

d x,yð Þ, sup
y � G

inf
x � P

d x,yð Þ

( )

Where d x,yð Þ denotes the distance of x and y, sup denotes the sup-

remum and inf for the infimum. This measures the distance between

the two subsets of metric space. It is modified to obtain a robust met-

ric by using the 95th percentile instead of the maximum (100th per-

centile) distance.

2.7.3 | Dice similarity coefficient

DSC¼
2 G \ Pð Þ

jG j þ jP j

This measures the overlap between ground truth maps G and predic-

tion maps P.

We use k-fold cross-validation to evaluate the overall perfor-

mance. In each split, 80% scans from each scanner are pooled into a

5866 LI ET AL.

3 Effective brain lesion and claustrum segmentation with ensembles of deep nets

58



training set and the remaining scans as a test set. This procedure is

repeated until all of the subjects were used in the testing phase.

3 | RESULTS

3.1 | Manual segmentation: intra-rater variability

In order to set a benchmark accuracy for manual segmentation, intra-

rater variability was assessed based on repeated annotations of 20 left

and right claustra by the same experienced neuroradiologist. In order

to assure independent segmentation, annotations were performed at

least 3 months apart. We obtained the intra-rater variability on

20 scans using the metrics VS, DSC, and HD95 and report the follow-

ing median values with interquartile ranges (IQR): VS: 0.949, [0.928,

0.972]; DSC: 0.667, [0.642, 0.704], HD95: 2.24 mm, [2.0, 2.55]. Nota-

bly, the image resolution of all scans is 1.00 mm3.

3.2 | DL-based segmentation: single-view

vs. multi-view

In order to investigate the added value of multi-view information for

the proposed system, we compare the segmentation performances of

the single-view model (i.e., axial, coronal, or sagittal) with the multi-

view ensemble model. To exclude the influence of scanner acquisition,

we evaluate our method on the data from one scanner (Munich-

Achieva), including 103 subjects and perform 5-fold cross-validation

for a fair comparison. In each cross-validation split, the single-view

CNNs and multi-view CNNs ensemble model are trained on images

from the same subjects. Afterwards, they are evaluated on the test

cases with respect to the evaluation metrics. Table 2 shows the seg-

mentation performance of each setting. We observed that the sagittal

view yields the worst performance among the three views (Figure 4).

We further perform statistical analysis (Wilcoxon signed-rank

test) to compare the statistical significance between the proposed

single-view CNNs and multi-view CNNs ensemble model. We

observed that the two-view (axial + coronal) approach outperforms

single-view ones significantly on HD95 and DSC. We further

compared the three-view (axial, coronal, and sagittal) approach with

the two-view(axial and coronal) approach and found that they are

comparable in terms of VS, and that the two-view approach outper-

forms the three-view approach in terms of HD95 (p = .035) and DSC

(p = .021). Thus, in the following sections, we use the axial + coronal

two-view segmentation approach to evaluate the method.

3.3 | DL-based segmentation: stratified k-fold

cross validation

In order to evaluate the general performance of our axial and coronal

multi-view technique on the whole dataset, we performed stratified

5-fold cross validation. In each fold, we take 80% of subjects from all

scanners, pool them into a training set and use the rest as a test set.

Figure 3 and Table 3 show the segmentation performance of three

metrics on 181 scans from four scanners, showing its effectiveness

with respect to volume measurements and localization accuracy. In

order to compare AI-based segmentation performance to the human

expert rater benchmark performance, we performed Wilcoxon signed-

rank test on 20 subjects as mentioned in Section 3.1 with respect to

three evaluation metrics (see Table 3). We found no statistical differ-

ence between manual and AI-based segmentation with respect to VS,

and we observed superior performance of AI-based segmentation

with respect to HD95 and Dice score. This result indicates that AI-

based segmentation performance is equal or superior to the human

expert level.

3.4 | DL-based segmentation: Influence of

individual scanners

To evaluate the generalizability of our method to unseen scanners, we

present a leave-one-scanner-out study. For the cross-scanner analysis,

we use the scanner IDs to split the 181 cases into training and test

sets. In each split, the subjects from three scanners are used as a train-

ing set while the subjects from the remaining scanner are used as the

test set. This procedure is repeated until all the scanners are used as

test set. The achieved performance is comparable with the cross-

TABLE 2 Segmentation performances (median values with IQR) of the single-view approaches and multi-view approaches

Metrics Axial (A) Coronal (C) Sagittal (S) A + C A + C + S

p value

A + C vs. A A + C vs. C A + C vs. A + C + S

VS (%) 94.4

[90.1, 96.7]

94.7

[90.4, 97.3]

79.1

[73.5, 86.4]

93.3

[89.6, 96.9]

92.9

[89.6, 96.5]

.636 .008 .231

HD95# (mm) 1.73

[1.41, 2.24]

1.41

[1.41, 2.0]

3.21

[2.24, 3.61]

1.41

[1.41, 1.79]

1.73

[1.41, 1.84]

<.001 <.001 .035

DSC (%) 69.7

[66.0, 72.4]

70.0

[67.2, 73.2]

55.2

[45.7, 63.1]

71.8

[68.7, 74.6]

71.0

[68.5, 74.3]

<.001 <.001 .021

Note: Values in bold denote statistical significance. The combination of axial and coronal views shows its superiority over individual views. Note that we

used equal weights for each view in the multi-view ensemble model.

Abbreviations: A, axial; C, coronal; DSC, dice similarity coefficient; HD95, 95th percentile of Hausdorff distance; S, sagittal; VS, volumetric similarity.
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validation results in Section 3.3, where all scanners were seen in the

training set. Figure 5 plots the distributions of segmentation perfor-

mances on four scanners being tested in turns. As shown in Table 4,

we found that the cross-validation results achieved significantly lower

HD95 and higher DSC than leave-one-scanner-out results at compa-

rable VS. This is because for cross-validation, all scanners are included

in training stage and thus no domain shift is seen between training

and testing stages. This result indicates that testing the model on

unseen scanners hampers segmentation performance.

To further investigate the influence of scanner acquisition for

segmentation, we individually perform 5-fold cross-validation on the

subsets Bonn-Ingenia and Munich-Achieva using subject IDs. The other

two scanners are not evaluated because they contain relatively fewer

scans. We use Mann–Whitney U test to compare the performance of

F IGURE 3 Segmentation results of 5-fold cross-validation on the 181 scans across four scanners: Bonn-Achieva, Bonn-Ingenia, Munich-

Achieva, andMunich-Ingenia. Each box plot summarizes the segmentation performance with respect to one specific evaluation metric

F IGURE 4 Segmentation results of the best case and the worst case in terms of DSC. In the predicted segmentation masks, the red pixels

represent true positives, the green ones represent false negatives, and the yellow ones represent false positives
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the two groups. We found that Bonn-Ingenia obtained significantly

lower VS and lower DSC than Munich-Achieva, which indicates that

scanner characteristics such as image contrast, noise level, etc., gener-

ally affect the performance of AI-based segmentation. The box plots

of the two evaluations are shown in Figure S1.

3.5 | How much training data is needed?

Since supervised deep learning is a data-driven machine learning

method, it commonly requires a large amount of training data to

optimize the nonlinear computational model. However, it is neces-

sary to know the boundary when the model begins to saturate in

order to avoid unnecessary manual annotations. Here, we perform

a quantitative analysis on the effect of the amount of training data.

Specifically, we split the 181 scans into a training set and a valida-

tion set with a ratio of 4:1 in a stratified manner from four scanners,

resulting in 146 subjects for training and 35 for validation. As a

start, we randomly pick 10% of the scans from the training set,

train, and test the model. Then we gradually increased the size of

the training set by a step of 10%. Figure 6 shows that the HD95

and the DSC only marginally improve on the validation set when

>50% of the training set is used, while the VS is relatively stable

over the whole range. Thus, we conclude that a training set includ-

ing around 75 manually annotated scans is sufficient to obtain good

segmentation results.

4 | DISCUSSION AND CONCLUSION

We have presented a deep-learning-based approach to accurately

segment the claustrum, a complex and tiny gray matter structure of

the human forebrain that has not been amenable to conventional seg-

mentation methods. The proposed method uses multi-view informa-

tion from T1-weighted MRI and achieves expert-level segmentation in

a fully automated manner. To the best of our knowledge, this is the

TABLE 3 Performance comparison of manual and AI-based segmentations on 20 subjects with Wilcoxon signed-rank test

Metrics Manual segmentation [median, IQR] AI-based segmentation [median, IQR] p value

VS (%) 94.9, [91.4, 97.6] 94.3, [89.6, 96.7] .821

HD95 (mm) 2.24, [2.0, 2.55] 1.41, [1.41, 2.24] .005

DSC (%) 68.9, [64.2, 70.9] 71.7, [67.8, 73.5] .001

Note: We found that AI-based segmentation performance is equal or superior to the human expert level.

Abbreviations: DSC, Dice similarity coefficient; HD95, 95th percentile of Hausdorff Distance; VS, volumetric similarity.

F IGURE 5 Segmentation results of leave-one-scanner-out evaluation on the four scanners. Each sub-figure summarizes the segmentation

performance on the testing scans from four scanners with respect to one metric. For example, the boxplot named Bonn-Achieva in the left sub-

figure shows the distribution of segmentation results on scanner Bonn-Achieva (scanner 1) when using data from the other three scanners to train

the AI model

TABLE 4 Statistics analysis of leave-one-scanner-out segmentation results and k-fold cross-validation results

Metrics Leave-one-scanner-out (mean ± Std) k-fold cross-validation (mean ± Std) p value

VS (%) 91.9 ± 6.2 92.2 ± 5.7 .268

HD95(mm)# 1.86 ± 0.58 1.76 ± 0.51 <.001

DSC (%) 68.3 ± 5.0 69.5 ± 5.3 <.001

Note: Values in bold denote statistical significance. Statistical differences between them with respect to HD95 and Dice score were observed. It indicated

that testing on unseen scanners harms the segmentation performance.

Abbreviations: DSC, Dice similarity coefficient; HD95, 95th percentile of Hausdorff Distance; VS, volumetric similarity.
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first work on fully automated segmentation of human claustrum using

state-of-the-art deep learning techniques.

The first finding is that the segmentation performance benefits

from leveraging multi-view information, specifically combining axial

and coronal orientations. The significance of improvement was con-

firmed using paired difference tests. The multi-view fusion process

imitates the annotation workflow by neuroradiologists, relying on 3D

anatomical knowledge from multiple views. This strategy is also

shown to be effective in common brain structure segmentation (Wei,

Xia, & Zhang, 2019; Zhao, Zhang, Song, & Liu, 2019) and cardiac

image segmentation (Mortazi et al., 2017). We observed that integrat-

ing sagittal view does not further improve the performance. This is

because the claustrum, a thin, sheet-like structure is mainly oriented

in the sagittal plane and can hardly be delineated in the sagittal view.

The proposed method yields a high median volumetric similarity,

a small Hausdorff distance, and a decent Dice score in the cross-

validation experiments. Although the achieved Dice score presents a

relatively small value (~70%), we claim that this is excellent consider-

ing the structure of the claustrum is very tiny (usually <1500 voxels at

1 mm3 isotropic resolution). We illustrate the correlation between

Dice scores and claustrum volumes in the Supplement. In similar tasks

such as segmentation of multiple sclerosis lesions with thousands of

voxels, a Dice score of around 75% would be considered excellent.

For the segmentation of larger tissues such as white matter and gray

matter, Dice scores would reach 95% (Gabr et al., 2020). Neverthe-

less, HD95 quantifies the distance between prediction and ground-

truth masks and is robust to assess tiny and thin structures (Kuijf

et al., 2019).

Another valuable finding is that the proposed algorithm achieves

expert-level segmentation performance and even outperforms a

human expert rater in terms of DSC and HD95, which is confirmed by

comparing the two groups of segmentation performances done by

human rater and the proposed method. We conclude that the human

rater presents more bias when the structure is tiny and ambiguous.

Meanwhile, an AI-based algorithm learns to fit the available knowl-

edge and shows a stable behavior when performing automated seg-

mentation. This finding aligns recent advances in biomedical research

where deep learning-based methods demonstrate unbiased quantifi-

cation of structures (Todorov et al., 2020). Thus, we conclude that the

proposed method would quantify the claustrum structure in an accu-

rate and unbiased way.

We found that the segmentation performance slightly dropped

when the AI-based model was tested on unseen scanners. Domain

shift is commonly observed in machine learning tasks between train-

ing and testing data with different distributions. However, from our

observation, the performance drop in the experiment is not severe,

and the segmentation outcome is satisfactory. This is because scan-

ners are in similar resolution from the same manufacturer, and the

scans are properly pre-processed, resulting in a small domain gap. To

enforce our model to be generalized to unseen scanners, domain

adaptation methods (Dou, de Castro, Kamnitsas, & Glocker, 2019;

Kamnitsas et al., 2017) are to be investigated in future studies.

Although the proposed method reaches expert-level performance

and provides unbiased quantification results, our work has a few limita-

tions. First, the human claustrum has a thin and sheet-like structure.

Thus, high-resolution imaging as used in this study at an isotropic reso-

lution of 1 mm3 will result in partial volume effects, which significantly

affect both the manual expert annotation and the automated segmen-

tation. We addressed this bias by using a clear segmentation protocol

to reduce variability in manual annotations as the reference standard.

Second, the data distribution of the four datasets is highly imbalanced.

It potentially affects the accuracy of the leave-one-scanner-out experi-

ment in Section 3.4, especially when a significant sub-set (e.g., Munich-

2) was taken out as a test set. In future work, evaluating the scanner

influence on a more balanced dataset would avoid such an effect.

In conclusion, we described a multi-view deep learning approach

for automatic segmentation of human claustrum structure. We empiri-

cally studied the effectiveness of multi-view information, leave-one-

scanner-out study, the influence of imaging protocols and the effect

of the amount of training data. We found that: (1) multi-view informa-

tion, including coronal and axial views, provide complementary infor-

mation to identify the claustrum structure; (2) multi-view automatic

segmentation is equal or superior to manual segmentation accuracy;

(3) scanner type affects segmentation accuracy even for identical

sequence parameter settings; (4) a training set with 75 scans and

annotation is sufficient to achieve satisfactory segmentation result.

We have made our Python implementation codes available on GitHub.
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4 Efficient neonate claustrum segmentation

with deep transfer learning

This chapter has been published as a peer-reviewed journal publication:

[1] A. Neubauer*, H. Li*, J. Wendt, B. Schmitz-Koep, A. Menegaux, D. Schinz, B. Menze,
C. Zimmer, C. Sorg, and D. M. Hedderich. “Efficient claustrum segmentation in T2-weighted
neonatal brain MRI using transfer learning from adult scans”. In: Clinical Neuroradiology

(2022), pp. 1–12

Synopsis: This work explores efficient deep learning technique to reduce manual annotation
effort for image segmentation tasks. It establishes a transfer learning based framework for
claustrum segmentation. Specifically, the learned knowledge from adult claustrum segmentation
in T1-w MR scans (one work in Chapter 3) is transferred to neonate claustrum segmentation in
T2-w ones. The effectiveness of the transfer learning technique was demonstrated in comparison
with nontransfer learning. The model can achieve satisfactory segmentation with only 12
annotated scans. Finally, the model’s applicability was verified on 528 scans and revealed reliable
segmentations in 97.4%. The developed fast and accurate automated segmentation has great
potential in large-scale study cohorts and to facilitate MRI-based connectome research of the
neonatal claustrum.

Contributions of thesis author: algorithm design and implementation, computational
experiments and composition of manuscript.
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Abstract

Purpose Intrauterine claustrum and subplate neuron development have been suggested to overlap. As premature birth

typically impairs subplate neuron development, neonatal claustrum might indicate a specific prematurity impact; however,

claustrum identification usually relies on expert knowledge due to its intricate structure. We established automated claustrum

segmentation in newborns.

Methods We applied a deep learning-based algorithm for segmenting the claustrum in 558 T2-weighted neonatal brain MRI

of the developing Human Connectome Project (dHCP) with transfer learning from claustrum segmentation in T1-weighted

scans of adults. The model was trained and evaluated on 30 manual bilateral claustrum annotations in neonates.

Results With only 20 annotated scans, the model yielded median volumetric similarity, robust Hausdorff distance and Dice

score of 95.9%, 1.12mm and 80.0%, respectively, representing an excellent agreement between the automatic and manual

segmentations. In comparison with interrater reliability, the model achieved significantly superior volumetric similarity

(p= 0.047) and Dice score (p< 0.005) indicating stable high-quality performance. Furthermore, the effectiveness of the

transfer learning technique was demonstrated in comparison with nontransfer learning. The model can achieve satisfactory

segmentation with only 12 annotated scans. Finally, the model’s applicability was verified on 528 scans and revealed

reliable segmentations in 97.4%.

Conclusion The developed fast and accurate automated segmentation has great potential in large-scale study cohorts and to

facilitate MRI-based connectome research of the neonatal claustrum. The easy to use models and codes are made publicly

available.

Keywords Claustrum · Newborn infants · Deep learning · Image segmentation · Transfer learning
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Abbreviations

AS Automated segmentation

CPU Central processing unit

DA Data augmentation

dHCP Developing Human Connectome Project

DSC Dice similarity coefficient

GA Gestational age

GPU Graphics processing unit

HD95 95th percentile of the Hausdorff distance

IQR Interquartile range

MRI Magnetic resonance imaging

non-TL Nontransfer learning

T2-w T2-weighted

TL Transfer learning

VS Volumetric similarity

Introduction

The claustrum is a thin and sheet-like gray matter struc-

ture of the mammalian forebrain between the striatum and

insular cortex, or more precisely, in humans between the ex-

ternal and extreme capsule [1, 2]. Examining the claustrum

is challenging due to its small size, ambiguous shape, and

deep brain location. The function of the claustrum remains

unclear, and most investigations are based on animal stud-

ies, which highlights the need for imaging-based studies in

humans. Preliminary findings suggest that the claustrum is

relevant for consciousness [3], task switching, salience net-

work organization, attention guiding, and top-down control

[4–8]. Human studies suggest a role of the claustrum in

selective attention and task switching [9]; however, these

investigations are usually limited to small sample sizes [10,

11]. In large cohorts, common manual claustrum segmen-

tation would be very laborious and time consuming.

Moreover, there is a lack of knowledge about claus-

trum development in humans. Most studies focus on an-

imals, while macrostructural and microstructural matura-

tion in humans remain unknown [1, 12, 13]. It has been

shown that there are significant differences between very

preterm and term-born young adults in patterns of BOLD

activity in clusters centered on the claustrum during a learn-

ing task [14]. A clear rationale to study claustrum de-

velopment, particularly in premature-born neonates, comes

from its shared ontogenetic trajectory with so-called sub-

plate neurons [15]. The subplate neurons are a predomi-

nantly transient cell population and are therefore vulnera-

ble to hypoxic-ischemic events and thus, play a key patho-

physiologic role for disturbed neurodevelopment after pre-

mature birth [16–21]. This is underlined by a previous

study showing altered claustrum microstructure in prema-

ture-born adults [22], which is a finding with potentially

significant implications. Examination of the claustrum and

altered claustrum structure in neurodevelopmental disorders

such as impaired development after premature birth may

lead to the establishment of imaging biomarkers for sub-

plate neuron pathology. This may also be extended to other

neurodevelopmental disorders with presumed subplate neu-

ron pathology, such as schizophrenia and autism spectrum

disorder [23]. Hence, close examination and characteriza-

tion of claustrum development in younger cohorts is of spe-

cial interest; however, data about the claustrum in a sizable

neonatal cohort are missing, mostly due to the lack of ade-

quate automated segmentation methods.

Recently, automated segmentation of the human claus-

trum in adults has been investigated by structural approx-

imation to the dorsal claustrum [24] and a two-dimen-

sional deep-learning approach [25]. Furthermore, a mul-

tiview deep learning-based model has been proposed [26]

to segment the human claustrum trained on a large anno-

tated dataset; however, no reliable automated segmentation

method for the claustrum in neonatal MRI exists.

To fill this gap, this study presents an efficient deep

learning-based segmentation framework using manual ex-

pert annotations of the claustrum in a sophisticated cohort

of neonatal MRI from the developing Human Connectome

Project (dHCP) [27] comprising ongoing brain develop-

ment. Transfer learning [28] enabled reuse of available ar-

tificial intelligence models despite different neuroanatomy,

scanner, image sequence, and image resolution shift, and

drastically shortened the training time to 90min. Segmen-

tation accuracy was evaluated based on three canonical

performance metrics, volumetric similarity (VS), 95th per-

centile of the Hausdorff distance (HD95), and Dice simi-

larity coefficient (DSC), and compared with intrarater and

interrater reliability of manual segmentation. The proposed

technique was also compared to a nontransfer learning ap-

proach. The study provides an insight into the training

process by quantifying the amount of manually annotated

images needed for good segmentation results. Lastly, the

deep learning model was applied to the whole, large-scale

dHCP dataset to see how its output holds out against rig-

orous visual quality control. An accuracy drop in young

neonates was analyzed and solved by an age-stratified train-

ing set. Training and testing code and models are released

on GitHub for other research groups. A detailed claus-

trum segmentation protocol is in the Online Supplement.

In parallel, the proposed transfer learning approach serves

as a template for similar segmentation tasks of intricate and

small structures in the developing brain.

Material andMethods

In the following parts, the single term “model” refers to

a 2D artificial neural network while “combined model” in-

K
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Fig. 1 A schematic view of the

image segmentation and eval-

uation pipeline of this study. It

includes three stages: 1) data

preparation, 2) model opti-

mization and 3) framework

evaluation

tegrates several 2D models (see Section Multiview Con-

volutional Neural Network). Whereas manually acquired

tracing of the claustrum is always described with the term

“manual segmentation”, the output of a model is described

as “automated segmentation” or “prediction” in an inter-

changeable way.

The general image processing diagram in this work in-

cludes three stages shown in Fig. 1. Data preparation deals

with the enrolment of 558 subjects, image preprocessing

and manual segmentation of neonate claustrum. Optimiza-

tion aims to perform transfer learning and train a deep-

learning model with the manual segmentations provided in

the first stage. Finally, the evaluation investigates the effec-

tiveness and the applicability of the established model on

unseen data including failure analysis and model improve-

ment. The following two sections describe the datasets and

evaluation metrics in this study.

Datasets

All 558 three-dimensional MRI scans of newborns from

the second data release of the developing Human Connec-

tome Project (dHCP)1 were included. The large-scale public

dataset contains 558 brain MRI of 505 neonates from 23 to

44 weeks postconceptional age with a mean (±standard de-

viation) scan age of 40 (±3) gestational weeks. In detail, the

study comprises 378 scans of term-born neonates and 180

scans of preterm-born neonates, including 82 scans of very

preterm-born neonates (birth age <32 gestational weeks).

Data involve previously known at risk groups for neurode-

1 http://www.developingconnectome.org/.

velopmental disorders and incidental findings in clinically

unsuspicious neonates [29, 30]. The explicit inclusion and

exclusion criteria are shown on the dHCP website2. Recruit-

ment and scanning took place at the Evelina Newborn Imag-

ing Centre, St Thomas’ Hospital in London, UK [29]. Writ-

ten consent by the parents was previously requested [27].

Due to immature structures with different tissue composi-

tion than in adults, the preferred structural image sequence

in neonatal brain MRI are T2-weighted (T2-w) scans. Thus,

the dHCP favored this sequence in data preprocessing steps

[29] and we focused on it for our study. Images were ac-

quired with a 3T Philips Achieva with a repetition time

TR= 12,000ms and echo time TE= 156ms, isotropic recon-

structed voxel size of 0.5mm and scanning in axial (SENSE

factor: 2.11) and sagittal (SENSE factor: 2.60) plane with

a neonatal 32 channel head coil [27]. The structural brain

images passed visual quality control, brain extraction, and

were preprocessed by retrospective motion and bias correc-

tion by the dHCP [29, 31].

Out of this dataset, 30 randomly chosen subjects passed

manual segmentation. Subsequently, these scans were split

in a training set of 20 subjects and a test set comprising

10 scans for evaluation. The remaining 528 scans served

as correction set and did not undergo manual segmentation.

Training, test, and correction sets are consistent throughout

the experiments (Table 1).

The manual segmentation was performed with ITK-

SNAP-v3.6.03 [32] on a Wacom Intuos M tablet (Wacom,

2 http://www.developingconnectome.org/study-inclusion-and-

exclusion-criteria/.

3 http://www.itksnap.org.
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Table 1 Characteristics of the dataset in this study. The dataset consists of 558 subjects from the developing Human Connectome Project. For

each dataset, the count of scans and the mean scan age (range) in gestational weeks are given

Scanner Field

strength

Voxel size

(mm3)

Training

set; scan age

Test set; scan age Correction

set; scan age

Philips Achieva (Philips,

Best, The Netherlands)

3T 0.5× 0.5× 0.5 20 scans

39.9 (36.1–42.6)

10 scans

40.4 (38.7–42.3)

528 scans

40.0 (29.3–45.1)

Kazo, Saitama, Japan). The first rater was under close

supervision of a board-certified neuroradiologist with 10

years of experience including imaging for a neonatal in-

tensive care unit and 5 years of experience pertaining to

imaging of premature-born individuals and related out-

comes. The detailed segmentation protocol, which assures

a constant structure for more objective and stable results, is

described in the Online Supplement. Despite this approach,

it remains challenging to define the exact boundaries of

the small claustrum due to the ambiguity. To quantify the

intrarater reliability of manual segmentation, the first rater

traced the right and left claustrum of the 10 subjects in the

test set at two time points. Furthermore, these 10 subjects

were manually segmented by a second rater with the same

protocol to assess interrater reliability.

Model Evaluation

Given a manual segmentation mask M and a predicted seg-

mentation mask P, three different evaluation metrics as-

sessed the model performance:

Volumetric Similarity (VS)

While VM and VP are the volumes of the claustrum in M

and P, respectively, the volumetric similarity (VS) between

them is defined as:

VSŒ%� = 1 −
jVM − VP j

jVM + VP j

95th Percentile of the Hausdorff Distance (HD95)

The Hausdorff distance (HD) is a common score to measure

the surface distance between two masks M and P [33]:

HD .M; P / = maxf sup
x2M

inf
y2P

d .x; y/ ; sup
y2P

inf
x2M

d .x; y/g

d(x,y) denotes the Euclidean distance of x and y, sup terms

the supremum and inf the infimum. We used the 95th per-

centile instead of the maximum (100th percentile) distance

to discount single outliers.

Dice Similarity Coefficient (DSC)

DSC =
2 .M \ P /

jM j + jP j

The Dice similarity coefficient (DSC) quantifies the spa-

tial overlap between manual segmentation M and prediction

mask P.

Evaluation Protocol

K-fold Cross-validation The model’s overall performance

was evaluated with k-fold cross-validation with 20 sub-

jects in the training/validation set. While k was set to 5,

in each split 80% of the scans were pooled into the training

set and the remaining 20% were used for validation. After

five iterations, all subjects were evaluated in the validation

phase.

Evaluation on a Test Set The model was optimized on 20

subjects. The combined model was evaluated on a test set

with 10 subjects and compared with intrarater and interrater

reliability.

ApplicabilityAssessment The combined model was applied

to the correction set with 528 subjects. These predictions

were compared with their subsequently manually corrected

correlates.

Additional Preprocessing and Postprocessing

Image Preprocessing We performed additional steps on top

of the basic preprocessing steps carried out by dHCP proto-

col (Sect. Datasets). First, a z-score normalization standard-

ized the brain voxel intensities for each scan as proposed in

[26]. Second, every slice was cropped to a uniform size of

200× 200 pixels to exclude background information. Third,

the first and last 25% of the slices were removed based on

empirical decision to focus on central parts of the brain,

which include the claustrum, and to lower the computa-

tional time.

Segmentation Postprocessing After generating a segmen-

tation, two postprocessing steps were applied to it: 1) the

segmentation maps were padded with respect to the orig-

inal size, i.e., an inverse operation to the previous second
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Fig. 2 A schematic view of the

proposed segmentation method

using transfer learning and

multiview convolutional neu-

ral networks to segment the

newborn claustrum given lim-

ited data. The network for each

view (i.e., axial and coronal)

is a 2D convolutional network

architecture, and it takes the raw

images as the input and predicts

the claustrum segmentation

preprocessing step and 2) an according sequence to prepro-

cessing step three to remove some artifacts.

Data Augmentation

In contrast to expensive manual segmentation, data aug-

mentation (DA) is a method to enlarge the amount and

the diversity of training data. A stack of selective trans-

formations, including moderate shift, scaling, rotation, and

shearing to the image slices and the corresponding masks,

resulted in doubled training data (see Fig. S1 in the Online

Supplement for selection of DA methods). For comparison,

the same models were trained with and without DA and

their performance was assessed on the validation set. There

was no significant difference regarding the VS; however,

DA led to a significant improvement of automated segmen-

tation concerning HD95 and DSC (see Table S1). For the

stated reasons, data augmentation enriched the following

experiments.

Multiview Convolutional Neural Network

As automated neonatal claustrum segmentation is not feasi-

ble to conventional atlas-based methods, we adopted a su-

pervised deep-learning approach developed for adults [26].

While training, the model takes labeled slices of MR im-

ages as input data and adapts its parameters towards ac-

curate prediction by minimizing the loss function (Sect.

Parameter Setting and Computation Complexity). Finally,

the trained model can be applied to trace the claustrum in

unseen neonatal images. Based on the beneficial multiview

approach proposed in [26], we train coronal and axial deep

convolutional neural networks on 2D single-view slices af-

ter parsing 3D MRI volume into axial and coronal views. In

the test stage, the predictions are automatically combined

on a voxel-wise level.

The network architecture of the convolutional neural net-

work [26] adapted to the neonatal image format is shown

in Fig. S2. It has a U-shape [34] with a down-convolutional

part that extracts features of the T2-w input scans. The up-

convolutional part assigns the categories claustrum or non-

claustrum to each pixel conforming a segmentation of the

claustrum.

Transfer Learning

Transfer learning is typically performed using a designed

model and pretrained weights from one source task and fine-

tuning on the target task. In this work, the knowledge from

task A: human claustrum segmentation in T1-w adult im-

ages, was transferred to task B: claustrum segmentation in

high-resolution T2-w images of neonates scanned in a range

of 21 gestational weeks with ongoing brain development.

As shown in Fig. 2, we used the same model and directly

took its weights learned from task A. Then the multiview

networks were optimized with only 20 T2-w scans with

manual segmentations for task B. It took around 90min for

the whole training process and 6s for automated segmen-

tation using a common NVIDIA (Santa Clara, CA, USA)

graphics processing unit (GPU). The high efficiency of our

framework is explained in the following sections.
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Fig. 3 Segmentation results of

three sample cases. In the au-

tomated segmentation masks,

the green pixels represent true

positives, the blue ones repre-

sent false negatives, and orange

ones represent false positives.

Examples are sorted accord-

ing to accuracy as determined

by the Dice similarity coefficient

(DSC). VS volumetric similar-

ity, HD95 95th percentile of

Hausdorff distance

Parameter Setting and Computation Complexity

The hyperparameters were chosen consistently for all exper-

iments and optimized efficiency and accuracy. Each model

was trained for 30 epochs to avoid overfitting and to keep

a low computational cost by monitoring VS and DSC on

a validation set. The batch size was empirically set to 60 as

a relatively large batch size tended to a more stable training

than a smaller batch size mainly due to the imbalanced na-

ture of the training set. The learning rate was set to 0.0002.

Non-TL models, which were prepared for comparison rea-

sons, were trained for 275 epochs (see Fig. S5). The other

hyperparameters were similar as for TL.

In the claustrum segmentation task, the distribution of

claustrum voxels and non-claustrum voxels are highly im-

balanced. To handle this issue, the Dice loss was used as

Table 2 Performance comparison between the accuracy of the automated segmentation achieved by the combined model and the intrarater

reliability or interrater reliability, respectively. # indicates that a smaller value represents better performance; bold p-values are significant

(p≤0.05)

Metric,

median (IQR)

Automated

segmentation

(AS)

Intrarater reliability Interrater reliability p-value

(AS vs. intrarater)

p-value

(AS vs. interrater)

VS, in % 95.9 (95.4, 97.2) 94.6 (93.2, 98.4) 89.6 (87.2, 94.1) 0.959 0.047

HD95, in mm# 1.12 (1.12, 1.34) 0.93 (0.71, 1.17) 1.96 (1.54, 2.69) 0.011 0.203

DSC, in % 80.0 (78.4, 81.2) 81.8 (80.4, 82.6) 70.5 (69.3, 71.8) <0.005 <0.005

VS volumetric similarity, HD95 95th percentile of Hausdorff distance, DSC Dice similarity coefficient, IQR interquartile range

a loss function to minimize the difference between manual

segmentation and prediction during training [26, 35, 36].

All experiments were performed on a Linux workstation

running Ubuntu 20.04 (Canonical Ltd., London, UK), with

64GB RAM. The number of trainable parameters in the sin-

gle-view architecture is 2,494,529. The model was trained

on one NVIDIA Titan-Xp GPU with 12GB of GDDR5X

memory. Training a single model for 30 epochs on a training

set containing 4200 images with a size of 200× 200 pixels

took only around 12min. For model robustness, three axial

view models and three coronal view models were trained

and aggregated at a voxel-wise level resulting in a com-

bined model. Predicting the segmentation of one scan with

192 slices by such a combined model took around 90s using

an Intel (Santa Clara, CA, USA) Xeon central processing

unit (CPU) (E3-1225v3) and only 6s when using a GPU.
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Fig. 4 Segmentation performance of the proposed method on the test set (automated seg.) and comparison to intrarater and interrater reliability

(reli.). In comparison with intrarater reliability, automated segmentation is significantly inferior concerning the 95th percentile of the Hausdorff dis-

tance (HD95) and Dice coefficient. In comparison with interrater reliability, automated segmentation is significantly superior regarding volumetric

similarity (VS) and Dice coefficient (in arbitrary unit, respectively)

Results

Segmentation Accuracy

Three examples of automated claustrum segmentation are

shown in Fig. 3.

To assess the accuracy of our combined model for auto-

mated claustrum segmentation, we calculated three perfor-

mance metrics, volumetric similarity (VS), 95th percentile

of the Hausdorff distance (HD95), and Dice similarity coef-

ficient (DSC), on the test set and compared its performance

with intrarater and interrater reliabilities on the same set

(for detailed results see Table 2 and Fig. 4). The proposed

method yielded median VS, HD95, and DSC of 95.9%,

1.12mm, and 80.0%, respectively. Repeated segmentation

by the same reader led to median VS, HD95, and DSC of

94.6%, 0.93mm, and 81.8%, respectively and is referred

to as intrarater reliability. Segmentation of the test set by

both readers 1 and 2 led to median VS, HD, and DSC of

89.6%, 1.96mm, and 70.5%, respectively and serves as in-

terrater reliability. Comparing the automated segmentation

Fig. 5 The left diagram shows volumetric similarity (VS) and Dice similarity coefficient (DSC), both in arbitrary unit, of the test set of models

trained with different amounts of training data (measured in scans). The right graph presents the 95th percentile of Hausdorff distance (HD95) in

mm of these models. The performance mainly increases till around 12 images in the training set and saturates afterward

with intrarater reliability with a Wilcoxon signed-rank test,

we found significantly lower HD95 (p= 0.011) and higher

DSC (p< 0.005) for repeated manual segmentation by the

same reader. Comparing the automated segmentation with

interrater reliability with the same statistical test, the auto-

mated segmentation algorithm achieved significantly higher

VS (p= 0.047) and higher DSC (p< 0.005). These results

show that the accuracy of our automated segmentation ap-

proach is comparable to intrarater reliability with minimally

inferior results at HD95 and DSC and that it is superior to

interrater reliability in two out of three performance met-

rics.

Efficiency of Transfer Learning in Comparison with
Nontransfer Learning

To evaluate the efficiency of the transfer learning technique

(TL), we compared it with the vanilla approach, i.e., train-

ing from scratch (non-TL). Internal fivefold cross-validation

on the training set was performed with both methods. VS,

HD95, DSC and training times were recorded and compared
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(for details, see Table S2 and Fig. S6 in the Online Sup-

plement). The TL method achieved a median VS, HD95,

and DSC of 95.3%, 1.06mm, and 78.9%, respectively, and

training took around 90min. The non-TL approach led to

a median VS, HD95, and DSC of 93.5%, 1.00mm, and

79.4%, respectively, and a training time of 17.5h. Com-

paring these results with a Wilcoxon signed-rank test, the

TL method showed a significantly superior VS (p= 0.050),

inferior HD95 (p= 0.016), and no significant difference re-

garding DSC (p= 0.452). Concerning the time needed for

training, TL was more than 11 times faster than training

from scratch. This finding suggests that TL and non-TL

achieve comparable performance but TL is far more time

efficient.

Data Range Needed for Transfer Learning

To determine how much training data are needed for trans-

fer learning, a model was trained with various training set

sizes, i.e., the first model was trained with two scans and

the training set was gradually increased with two scans for

the following models. The VS, HD95, and DSC were de-

termined on the test set. The model performance improved

with increasing training set up to 12 images (Fig. 5). Be-

yond this size, there only remained a minimal shift of DSC

up to 18 images. Surprisingly, even a training set of four

scans can reach relatively high scores. This result indicates

that transfer learning can deal effectively with a small train-

ing set of around 12 scans and their corresponding manual

segmentations. Additional results of how much data are

needed for non-transfer learning are shown in Fig. S6 in

the Online Supplement.

Applicability Assessment on a Large-scale Held-out
Correction Set

To test the applicability of the proposed deep-learning-

based approach, the model predicted the claustrum in the

held-out correction set of 528 scans. Subsequently, we cor-

Fig. 6 Volumetric similarity

(VS, in arbitrary unit), Dice

similarity coefficient (DSC, in

arbitrary unit) and 95th per-

centile of the Hausdorff distance

(HD95, in mm) of 528 auto-

mated segmentations of the

claustrum. Except for several

outliers with medium or low ac-

curacy, the majority shows high

performance in all three metrics

within a small range

Fig. 7 Dice similarity coefficient (DSC, in arbitrary unit) of 528 man-

ually corrected and initial automated segmentations of right and left

claustrum depending on the scan age. The head-down arrows indicate

the scan age of the training subjects. Subjects with relatively low seg-

mentation performance are younger than the training samples

rected the predictions manually where needed and com-

pared predicted and corrected segmentation by charging

VS, HD95, and DSC. The median VS, HD95, and DSC

were 98.5%, 0.00mm, and 97.7% (see Fig. 6), respectively.

In total, we found 14 scans of which the DSC of the claus-

trum segmentation was less than the mean intrarater re-

liability of 81.8%, corresponding to 2.7% of the whole

correction set. In three of these scans, the right claustrum

was not detected at all. These subjects, two female and

one male neonate, were born in a range of gestational age

26.1–28.7 weeks and scanned between 29.3 and 31 ges-

tational weeks, suggesting an unfavorable impact of very

young age on the accuracy of the prediction. A performance

comparison between the right and left claustrum is shown

in the Online Supplement in Fig. S8 and Table S3.

In a further analysis, we tried to explain the result of the

outliers with low performance (DSC <81.8%). As shown in
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Fig. 7, all predictions with low accuracy were obtained in

newborns before 35.0 gestational weeks. In subjects older

than 35.0 gestational weeks, the combined model reached

a high accuracy (DSC >81.8%) in 100% of the scans.

Notably, the training subjects were scanned in a range of

36.1–42.6 gestational weeks which presents a domain shift

compared to the correction set. Three exemplary young sub-

jects are presented in Fig. S9 in the Online Supplement.

This indicates an age-dependent artificial intelligence per-

formance which could be attributed to restricted training

samples. Thus, an adjustment of the training samples should

improve the performance in young subjects. To test this hy-

pothesis, we replaced two older neonates (scan age around

40 gestational weeks) by two very preterm-born subjects

(scan age around 29 gestational weeks) to obtain age strat-

ification in the training set. This led to significantly higher

performance in a group of the five young neonates (scan

age 29.3–32.7 gestational weeks) with the lowest DSC in

Fig. 7 (see Fig. S10) and, surprisingly, also in the original

test set (scan age 38.7–42.3 gestational weeks) (see Table

S4). To sum up, a scan age stratification of the training set

globally improved the model in this developing cohort.

Discussion

This study demonstrated that fully automated claustrum

segmentation in T2-weighted neonatal brain MRI is feasi-

ble by using deep learning. While the gray matter structure

is too small for atlas-based labeling and too intensive for

large-scale manual labeling, we successfully implemented

a transfer learning (TL) approach building on a previous

method for claustrum segmentation in adult brain MRI,

leading to segmentation accuracy comparable to intrarater

reliability and superior to interrater reliability. The released

models and codes will facilitate MRI-based research of the

newborn claustrum through automated segmentation. In ad-

dition, the presented approach can function as a template for

automated segmentation of other intricate structures in the

developing neonatal brain or transfer learning to different

datasets by published model training and testing code.

The proposed transfer-learning-based method offers

high segmentation accuracy. A transfer learning approach

fits to our segmentation problem in neonates because DL-

based segmentation approaches are more common in adults

but not in neonates e.g., amygdala nuclei or hypothala-

mus [37, 38]. In principle, evidence for the possibility to

transfer adult segmentation of specific subcortical regions

to neonates was demonstrated. The performance of our

segmentation approach was evaluated with three metrics,

volumetric similarity (VS), 95th percentile of the Hausdorff

distance (HD95) and the Dice similarity coefficient (DSC),

on a test set and compared with intrarater and interrater

reliability of the same test set. Automated segmentation

was partly inferior to intrarater reliability but significantly

superior to interrater reliability concerning two scores. In

comparison with the prior study of automated adult claus-

trum segmentation [26], all scores of the neonate claustrum

were improved. A possible explanation for this might be

the enhanced resolution of newborn MRI/adult MRI of

0.5/1.0mm isotropic voxel size suggesting that a higher

image resolution and a larger volume in voxels lead to

higher accuracy. The overall performance level is lower

than in comprehensive white or gray matter segmentation

reaching a Dice score of about 95% [39]; however, the

accuracy accords with observations in other ambiguous

and small structures like the hypothalamus and its sub-

nuclei with a Dice score of 51–84% [37]. Altogether, the

deep learning method deals with the delicate and variable

neonatal claustrum despite a short training set of 20 scans

segmented by one rater and outperforms the variability of

several human raters, which is especially relevant in large

datasets.

When matching TL with non-TL, both options had com-

parable performance but TL was more time efficient. The

methods were optimized individually regarding the num-

ber of epochs for training. A second analysis (shown in

the Online Supplement) compared the methods with differ-

ent sizes of the training set with a similar result for larger

training sets. With these approaches, a general superiority

of TL in terms of our metrics was not certifiable which is

consistent with other image segmentation tasks [33]. In the

training process, the loss was lower with TL than with non-

TL (see Fig. S4 in the Online Supplement) which could

be explained by the fact that the Dice loss is not simply

confined to the DSC but also represents the certainty of

the prediction. To conclude, TL is more time efficient and

energy saving than non-TL with stable performance.

We further found that 12 scans for training can be enough

to achieve a high model performance. A larger training set

hardly improved the accuracy determined with VS, HD95,

and DSC. Compared to our previous study, the needed data

are much smaller in this neonate project than for adult claus-

trum segmentation, even after correcting for different image

resolutions [26]. Surprisingly, overfitting did not prevent the

learning process with small training sets. This could be due

to the variability of the images as they come from different

layers of the brain. The effect of data augmentation was

excluded by testing how much data are needed for models

trained without DA. This approach requires more training

data for the same performance. We did not test non-DA-

non-TL models which would be the exact correlate to the

previous adult study. In a large cohort like the dHCP, au-

tomated segmentation by deep learning can reduce manual

segmentation for the most part as the training and test set

are only a small fraction of the whole dataset.
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On the question of model applicability, the combined

model, an ensemble of three axial and three coronal net-

works, detected the claustrum correctly in 97.4% of a large

held-out correction set. The automated segmentation was

compared with manually corrected versions of these predic-

tions and evaluated with VS, HD95, and DSC. The mostly

uniform Hausdorff distance of 0.0mm or 0.5mm could be

attributed to the 95th percentile of this score in conjunc-

tion with barely significant adaptations of the predictions.

All inadequate predictions with DSC lower than median in-

trarater reliability were obtained in newborns younger than

35.0 gestational weeks. This result could be explained by

the training set which exclusively covered older neonates.

Extremely immature neuroanatomy, such as less gyrifica-

tion or different contrast appearance in MRI than in older

neonates, might have distracted our model and resulted in

undersegmentation (i.e., false negatives). An age-stratified

training set improved the performance in these young sub-

jects and in older neonates. Overall, annotation correction

is far more time efficient than manual segmentation from

scratch. An automatic selection of subjects that should pass

visual control, e.g., due to young age or insufficient detected

claustrum volume, could speed up this process further as

segmentation in older subjects worked without big mis-

takes. Consequently, manual correction might be expend-

able in the latter group. The proposed TL method success-

fully segments the claustrum with little need for control and

correction and enables claustrum analyses in large neonatal

cohorts. This facilitates the investigation of the claustrum

development and its relation to premature birth. Further

investigations are needed to examine the association with

other neurodevelopmental disorders, such as schizophrenia

and autism spectrum disorders [7].

Despite efficient and accurate automated segmentation,

our study has some limitations. First, it is a challenge to pre-

cisely define the boundaries of the small and intricate claus-

trum. Although the dHCP provides a very high isotropic res-

olution of 0.5mm and a segmentation protocol structured

the process (Online Supplement), the manual segmentation

is not perfect because the boundary of specific regions is

often ambiguous and its segmentation partly remains sub-

jective, i.e., depends on the rater [37, 40]. This kind of

data uncertainty commonly exists in medical image seg-

mentation tasks. One potential solution is to quantify the

segmentation uncertainty (e.g., interrater reliability) when

building the segmentation model and take the uncertainty of

the outcome into account for the downstream analysis (Sect.

Segmentation Accuracy). Second, all training images were

segmented by one rater. This improves the uniformity of

segmentations but could also lead to a bias of the model.

Further analyses with two or more raters would be nec-

essary to appraise this impact. Third, the model training

was limited to a small dataset that did not cover the whole

age range of the dHCP or all neonatal stages of develop-

ment, which presumably dropped the accuracy, especially in

early premature newborns. The model still facilitates man-

ual work in the affected subjects but a strong visual control

is important.

In conclusion, this study presented a deep learning ap-

proach for automated claustrum segmentation in human

neonatal brain MRI. We evaluated the accuracy, compared

transfer and non-transfer learning, analyzed how much data

are needed for transfer learning and assessed the applica-

bility of the proposed method including a model enhance-

ment by age-stratified training. We conclude that 1) transfer

learning is a bit inferior to intrarater reliability but superior

to interrater reliability, 2) transfer learning shows similar

performance to non-transfer learning and is more time ef-

ficient, 3) the prediction accuracy stabilizes with a training

set above 12 scans and 4) the combined model applies to

a large cohort with predominantly accurate results. The im-

plementation codes are available on GitHub to the research

community.
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5 Unified multi-contrast MR neuroimage

synthesis and its clinical validation

This chapter has been published as one peer-reviewed conference publication and one
peer-reviewed journal publication:

[1] H. Li*, J. C. Paetzold*, A. Sekuboyina, F. Kofler, J. Zhang, J. S. Kirschke, B. Wiestler, and B.
Menze. “DiamondGAN: unified multi-modal generative adversarial networks for MRI sequences
synthesis”. In: International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Springer. 2019, pp. 795–803

[2] T. Finck*, H. Li*, L. Grundl, P. Eichinger, M. Bussas, M. Mühlau, B. Menze, and B. Wiestler.
“Deep-learning generated synthetic double inversion recovery images improve multiple sclerosis
lesion detection”. In: Investigative Radiology 55.5 (2020), pp. 318–323

Synopsis: The above two works develop a unified synthesis framework for multi-contrast
MR image synthesis based on generative adversarial networks and validate it in a clinical
setting. Specifically, publication ♯1 develops a conditional synthesis approach based on generative
adverarial network and allows for flexible training and arbitrary missing contrast synthesis.
Publication ♯2 implements the developed technique, generates synthetic double inversion recovery
(synthDIR) images and compare their diagnostic performance to conventional sequences in
patients with multiple sclerosis (MS). We observe that the generated DIR images improve lesion
depiction compared with the use of standard modalities.

Contributions of thesis author: algorithm design and implementation, computational
experiments and composition of manuscript.
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Abstract. Synthesizing MR imaging sequences is highly relevant in clin-
ical practice, as single sequences are often missing or are of poor quality
(e.g. due to motion). Naturally, the idea arises that a target modal-
ity would benefit from multi-modal input, as proprietary information of
individual modalities can be synergistic. However, existing methods fail
to scale up to multiple non-aligned imaging modalities, facing common
drawbacks of complex imaging sequences. We propose a novel, scalable
and multi-modal approach called DiamondGAN. Our model is capable of
performing flexible non-aligned cross-modality synthesis and data infill,
when given multiple modalities or any of their arbitrary subsets, learn-
ing structured information in an end-to-end fashion. We synthesize two
MRI sequences with clinical relevance (i.e., double inversion recovery
(DIR) and contrast-enhanced T1 (T1-c)), reconstructed from three com-
mon sequences. In addition, we perform a multi-rater visual evaluation
experiment and find that trained radiologists are unable to distinguish
synthetic DIR images from real ones.

1 Introduction

In clinical practice, magnetic resonance imaging (MRI) datasets often con-
sists of high-dimensional image volumes with multiple imaging protocols and
repeated scans acquired at multiple time points. Given the multiplicity of possi-
ble sequence parameters, protocols largely vary depends on the imaging centers,

H. Li and J. C. Paetzold—Equal contribution.

c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11767, pp. 795–803, 2019.
https://doi.org/10.1007/978-3-030-32251-9_87
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hindering their comparability. This often leads to repeated exams or severely
limits the clinical information that can be drawn from those MRI studies. Partic-
ularly, in the case of multiple sclerosis, longitudinal comparisons of MRI studies
are the main reason for treatment decisions and existing lesion quantification
tools require complete identical modalities at multiple time points. Potentially,
cross-modality image synthesis technique can resolve those obstacles through
efficient data infilling and re-synthesis.

Recently, generative adversarial networks (GANs) have been applied in trans-
lating MRI sequences, positron emission tomography (PET) and computed
tomography (CT) images. Most of them are one-to-one cross-modality synthesis
approaches, for example, PET [12] synthesis and MRI sequences translation [3].
A recent multi-modal synthesis method [10] has limited scalability because the
input and output modalities are required to be spatially aligned. Although there
are several multi-domain translation algorithms [2] in the computer vision com-
munity, these approaches design one-to-multiple domain translation but do not
model the multiple-to-one domain mapping. Especially in medical images syn-
thesis, multiple-to-one cross-modality mapping is highly relevant as proprietary
information of individual and non-aligned modalities can be synergistic.

There are three main challenges in the scenario of multi-modal cross-modality
medical image synthesis: (1) the input and target modalities are assumed to be
not spatially-aligned because registration methods for aligning multiple modali-
ties may fail, restricting the applicability of conventional regression approaches.
(2) input modalities may be missing due to different clinical settings between
centers, thus a traditional regression-based data infill would be restricted to
the smallest uniform subset or rely on iterative data infill methods. (3) existing
approaches have limited scalability, e.g. in a Cycle-GAN [14] setting, one would
therefore have to train individual models for possible combinations of the input
modalities.

Contributions (1) We propose DiamondGAN, which is a unified, scalable
multi-modal generative adversarial network. It learns the multiple-to-one cross-
modality mapping among non-aligned modalities using only a pair of generators
and discriminators, optimized with a multi-modal cycle-consistency loss func-
tion. (2) We provide both qualitative and quantitative results on two clinically-
relevant MRI sequences synthesis tasks, showing DiamondGAN’s superiority
over baseline models. (3) We present the results of extensive visual evaluation,
performed by fourteen experienced radiologists to confirm the quality of syn-
thetic images.

2 Methodology

2.1 Multi-modal Cross-Modality Synthesis

Given an input set of n modalities: X = {xi|i = 1, ..., n} and a target modal-
ity T. Our goal is to learn a generator G that learns mappings from multiple
input modalities to one target modality. We assume that (1) all the modalities,
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Fig. 1. Left: The high-level idea behind DiamondGAN, which is capable of learning
mappings between any subset of multiple input modalities (X ) to a target modality in
a single model. This mapping represents a diamond-shape topology. Right: Overview
of DiamondGAN. It consists of two modules, a pair of discriminators D and a pair
of generators G. (a) D1 and D2 learn to distinguish between the real and synthetic
images from multi-modal input and the target output respectively. (b) G1 takes both
multi-modal input and the condition as input and generates a target modality. The
condition c is a binary vector: c = {c1, c2, ..., cn}, where ci indicates the corresponding
input modality as available (1) or not (0). It is spatially replicated and concatenated
with the input modalities in the feature level. (c) G2 tries to generate the original
modalities from the synthetic target modality given the original availability condition.

i.e., X and T, are not spatially-aligned because it is rather difficult to obtain
strictly spatially-aligned images as mentioned in Sect. 1; (2) the input modalities
can be any subset of X, denoted as X’ during the training and inference stages
as some modalities of a subject may be missing in clinical practice.

We enforce G to be capable of translating any subset X’ into a target modal-
ity T using a condition c which indicates the presence of the input modalities,
i.e., G(X ′, c) → T . This condition handles the missing modality issue and makes
it a scalable model in both the training and the inference stages. We further intro-
duce a multi-modal cycle-consistency loss to handle the “non-aligned modalities”
issue among the input and output. Figure 1 illustrates the main idea of our pro-
posed approach. We regularly generate the condition c and the corresponding
multi-modal data X c of all possible combinations, so that G learns to flexibly
translate the arbitrary multi-modal input. As mentioned in the caption of Fig. 1,
we use an availability condition to serve as an indicator of the input modalities.
It is spatially replicated to the image size (1 × H × W ) and is a part of the two-
stream network input. In the case of 3 modalities as the input, the condition
c = [1, 1, 1] would indicate that every input modality is given.

Multi-modal Reconstruction Loss. We aim to train G to guarantee that
a generated target modality preserves the content of its input modalities. The
input modalities are assumed to be not spatially aligned or not from the same
subject as mentioned above. In this situation, the traditional cycle loss [14]
as well as the regression loss [5] would fail to tackle the multi-modal and
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non-alignment issues. To alleviate the two problems, we extend the traditional
cycle-consistency loss [14] to a multi-modal one. Specifically, we concatenate the
source modalities into a multi-channel input and define a multi-channel output
as the target modality. We then simultaneously train two generators G1 : X → T

and G2 : T → X in a cycle-consistency fashion. Please note that the output tar-
get modality is in multiple channels which correspond to the input modalities.
The loss function of the generator is defined as:

Lrec = EX,T,c[||X − G2(G1(X, c), c)||1 + ||T − G1(G2(T, c), c)||1] (1)

Adversarial Loss. To make the generated images indistinguishable from real
images, we adopt an adversarial loss:

Ladv = EX,T {log [D1(X) · D2(T )]}

+ EX,T,c{log [(1 − D2(G1(X, c))) · (1 − D1(G2(T, c)))]}
(2)

where G1 generates a target modality G1(X, c) conditioned on the presence of
input modalities X, while D1 tries to distinguish between real input modalities
and generated ones. Similarly, G2 generates the original input modalities G2(T,
c) conditioned on the presence of original input modalities X and D2 tries to dis-
tinguish between the real target modality and the generated one. The generators
try to minimize this objective, while the discriminators to maximize it.

Full Objective. The objective functions to optimize D and G respectively are

LD = −Ladv; LG = Ladv + λrecLrec (3)

where λrec is the hyper-parameter that balances the reconstruction loss and
adversarial loss.

2.2 Implementation

Two-Stream Network Architecture. To leverage the information from both
input modalities and corresponding availability conditions, we build a two-
stream network architecture based on the popular encoder-decoder network [6].
It takes the multi-modal images and condition as two inputs and merges them in
the feature level. This network contains stride-2 convolutions, residual blocks [4]
and fractionally-strided convolutions (1/2 stride). We use 6 blocks for the input
size of N × H × W , where N , H and W are the number of modalities, height
and width of the images respectively. The input and availability conditions pass
through two encoders and are merged in the last feature layer before the decoder.
PatchGANs [6] is used for the discriminator network, which classifies the patch
feature maps to real or fake, instead of using a fully-connected layer.
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Training Details. We apply two recent techniques to stabilize the training of
the model. First, for Ladv (Eq. 2), we replace the negative log likelihood objective
by a least-squares loss [9]. Second, to reduce the model oscillation, we update
the discriminators using a history of generated images rather than the ones
produced by the latest generators, as proposed in [11]. Thus we put the 25
previously generated images in an image buffer. We set λrec = 10 in Eq. 3 for all
the experiments. We use the Adam solver [7] with a batch size of 5. All networks
were trained from scratch with a learning rate of 0.0002 and for 20 epochs. When
given n input modalities, for each epoch the parameters in both generator and
discriminator are updated for 2n −1 times given 2n −1 training subsets of input
modalities excluding empty set. The implementations of our model are available
in https://github.com/hongweilibran/DiamondGAN.

2.3 Visual Rating and Evaluation Protocol

Quantitative evaluation of generated images in terms of standard scores for errors
and correlation remains a debatable task [1]. Additionally, the evaluation with
common metrics such as PSNR and MAE [13] would not tell us to whether the
algorithm captures clinically relevant small substructures. Therefore, we strive to
get experts’ estimates of the image quality. We design a multi-rater quality evalu-
ation experiment. Neuro-radiologists rated the images in a browser-application.
In each trial, they were provided with two images. On the left side, one real
source image of a T1 or Flair images is presented. On the other side, a paired
image of the target modality is shown which is either a real image or a generated
one. The displayed paired images were randomly chosen in the pool of generated
images and real ones. This particular setup enables the experts to identify very
small inconsistency or implausibility between the two images immediately. For
evaluation, the experts were asked to rate the plausibility of the image on the
right based on the real image on the left, to assign a 6-star rating, where 6 stars
denoted a perfectly plausible image and 1 star a completely implausible image.
The images were presented in 280 trials.

3 Experiments

Datasets. Dataset 1 consists of 65 scans of patients with MS lesions from a local
hospital, acquired with a multi-parametric protocol, which includes co-registered
Flair, T1, T2, double inversion recovery (DIR) and contrast-enhanced T1 (T1-c)
after skull-stripping. The first three modalities are common modalities in most MS
lesion exams. DIR is a MRI pulse sequence, which suppresses signal from the cere-
brospinal fluid and the white matter, enhancing the inflammatory lesion. T1-c is a
MRI sequence which requires a paramagnetic contrast agent (usually gadolinium)
that reduces the T1 relaxation time and thereby increases the signal intensity. Syn-
thesizing DIR and T1-c is of clinical relevance because it can substantially reduce
medical costs. We mainly report our result on Dataset 1. Additional Dataset 2 is
used to demonstrate that our approach can work on multiple datasets with incom-
plete and non-aligned modalities. It is a part of the public MICCAI-WMH dataset
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[8], and includes 40 subjects with two modalities (Flair and T1). 2D axial slices are
used for training the network. All the slices are cropped or padded to a uniform size
of 240 × 240 and intensity values are rescaled to [−1, 1].

Reconstructing DIR and T1-c from Common Modalities. We perform
two image synthesis tasks on two clinically-relevant MRI sequences (DIR and
T1-c), using three common modalities (i.e., Flair, T1 and T2). We separate the
Dataset 1 into a training set, a validation set and a test set, resulting in 30
scans (2015 slices for each modality) for training and 35 scans for testing (2100
slices for each modality). To obtain the optimal hyper-parameters of the model,
we use 5 out of the 30 training scans as a validation set. A common approach
for quantitative evaluation of medical GAN images is to calculate relative errors
and signal to noise ratio between the synthetic image and the real image [13].
Table 1 shows the results of peak signal-to-noise ratio (PSNR) and mean absolute
error (MAE) by comparing the synthetic images and real T1-c and DIR images.
For the synthetic DIR and T1-c images, we report the highest PSNR and the
lowest MAE for a combined T1+T2+Flair input to our model. In the DIR
synthesis experiment, the listed scores of using multiple inputs to our GAN
are comparable (MAE 0.058-0.065). Whereas, the scores for single inputs are
substantially worse (MAE 0.073-0.084). For the T1-c synthesis task, we find that
any combination of multi-modal inputs involving the T1 modality (MAE 0.045-
0.048) results in better scores compared to other inputs. This indicates that our
model successfully extracts the relevant information, as T1-c is a T1 scan with
a contrast enhancing agent. For comparison, we implement CycleGAN [14] to
perform one-to-one cross-modality synthesis, the best results of CycleGAN are
listed in Table 1. For DIR synthesis, using Flair images as the input of CycleGAN
achieves the highest PSNR and lowest MAE while for T1-c, using T1 as the input
gets the best performance. The proposed model outperforms CycleGAN in both

Table 1. Quantitative evaluation of our generated images compared to the real DIR
and T1-c image using PSNR and MAE as evaluation metrics. Results show that the
generated images benefit from a multi-modal input. ↑ indicates that higher values
corresponds to better image qualities.

DIR PSNR↑ DIR MAE↓ T1-c PSNR↑ T1-c MAE↓

CycleGAN [14] 17.34 0.068 20.36 0.045

DiamonGANT1 15.46 0.084 20.21 0.048

DiamonGANT2 15.99 0.073 19.34 0.054

DiamonGANFlair 16.16 0.078 17.15 0.068

DiamonGANT1+T2 17.41 0.065 20.75 0.046

DiamonGANT2+Flair 18.58 0.059 19.78 0.051

DiamonGANT1+Flair 18.02 0.062 20.40 0.047

DiamonGANT1+T2+Flair 18.63 0.058 20.86 0.045
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tasks. We further replace a part of the training Flair and T1 images in Dataset 1
with images from Dataset 2 (totally 794 images for each modality) and we find
the result on same testing set is comparable to using the original Dataset 1.

Wilconxon signed-rank tests are conducted on the PSNR and MAE pairs
generated by DiamondGAN (with 3 modalities) and CycleGAN respectively.
Although the improvements of PSNR and MAE look small in whole image level,
they are statistically significant (p-value< 0.0001) in the case of DIR in Table 1.
This improvement is highly relevant for biomaker synthesis and for pathological
evaluation especially in the case of MS lesions with small volumes. The samples
of synthetic T1-c and DIR images are shown in Fig. 2.

Visual Evaluations by Neuroradiologists. Fourteen neuro-radiologists with
median 5+ years of professional experience participated. Each evaluated 210 syn-
thetic images and 70 original images. The 210 synthetic images are generated
enforcing 6 different input conditions in which each condition includes 35 sam-
ples. The rating results of the 14 raters are averaged and the box plots of the
results are shown in Fig. 3. For the synthesis of T1-c images, we found that three
multi-modal combinations (i.e., T1, T1+Flair and T1+T2+Flair) gave compa-
rable results, while the ones based solely on a Flair were consistently rated
as implausible. The plausibility of DIR images synthesized with T1+T2+Flair
input was rated on average 0.83 stars higher than that with solely T1 input.
This is plausible as the DIR is a complex sequence containing proprietary infor-
mation, its synthesis thus benefits from multiple input sources. For the synthetic

Difference MapSynthetic T1-cReal T1-c Synthetic DIRReal DIR Difference Map

Fig. 2. Samples of synthetic T1-c and DIR images given the combination of T1, T2
and Flair modalities. Difference images are generated and visualized in heat maps. The
synthetic images preserve the tissue contrast and the anatomy information. However,
we find more differences in synthetic DIR images than in synthetic T1-c ones, especially
around the brain boundary. This could be due to the alignment error by registration
methods.
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Fig. 3. Box plots showing the rating scores of synthetic images and real ones for T1-c
modality on the left and DIR modality on the right. The means are shown as black
numbers. DiamondGAN achieves comparable plausibility levels for the DIR modality.

images with T1+T2+Flair input, the experts assigned an identical rating to the
synthetic and original images (4.54 stars vs 4.7 stars).

We conduct Wilcoxon rank-sum tests on the paired rating scores of synthetic
and real images from 14 raters on 6 conditions which results in 6 pairs of 14 obser-
vations. Results show that the pair of rating scores on synthetic DIR images by
T1+T2+Flair input and real DIR images are not significantly different (p-value
= 0.1432) while all other pairs are significantly different (p-values< 0.0001). This
demonstrates that trained radiologists are unable to distinguish our synthetic
DIR images from real ones. Furthermore, the experts ratings for the individual
conditions of synthetic images are in agreement with the metrical evaluation in
Table 1. For T1-c synthesis, the PSNR and MAE scores are consistently good
when T1 modality is fed to DiamondGAN.

4 Conclusion and Discussion

This work introduces a novel approach for multi-modal medical image synthesis,
with extensive multi-rater experiments and statistical tests. This multi-modal
approach allows us to mine the structured information inside the existing exten-
sive MRI sequences. Pathological evaluation is the ultimate goal of this work.
Our approach is evaluated by clinical partners who contributed the datasets. We
compared synthetic DIR sequence with conventional FLAIR sequence in a MS
lesions detection task in a cohort study. The proposed DiamondGAN has the
potential to reduce medical costs in clinical practice.

Acknowledgement. This work is support by Technische Universität München - Insti-
tute for Advanced Study, funded by the German Excellence Initiative and European
Union 7th Framework Programme under grant agreement No. 291763. HL and BW are
supported by the funding from Zentrum Digitalisierung Bayern.

87



DiamondGAN: Unified Multi-modal Generative Adversarial Networks 803

References

1. Borji, A.: Pros and cons of gan evaluation measures. Comput. Vis. Image Underst.
179, 41–65 (2019)

2. Choi, Y., et al.: StarGAN: unified generative adversarial networks for multi-domain
image-to-image translation. In: CVPR, pp. 8789–8797 (2018)

3. Dar, S.U., et al.: Image synthesis in multi-contrast MRI with conditional generative
adversarial networks. IEEE Trans. Med. Imaging (2019)

4. He, K., et al.: Deep residual learning for image recognition. In: CVPR, pp. 770–778
(2016)

5. Isola, P., et al.: Image-to-image translation with conditional adversarial networks.
In: CVPR, pp. 1125–1134 (2017)

6. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46475-6 43

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Kuijf, H.J., et al.: Standardized assessment of automatic segmentation of white
matter hyperintensities; results of the WMH segmentation challenge. IEEE Trans.
Med. Imaging (2019)

9. Mao, X., et al.: Least squares generative adversarial networks. In: CVPR, pp.
2794–2802 (2017)

10. Sharma, A., Hamarneh, G.: Missing MRI pulse sequence synthesis using multi-
modal generative adversarial network. arXiv preprint arXiv:1904.12200 (2019)

11. Shrivastava, A., et al.: Learning from simulated and unsupervised images through
adversarial training. In: CVPR, pp. 2107–2116 (2017)

12. Wang, Y., et al.: 3D conditional generative adversarial networks for high-quality
PET image estimation at low dose. Neuroimage 174, 550–562 (2018)

13. Welander, P., et al.: Generative adversarial networks for image-to-image translation
on multi-contrast MR images-a comparison of cyclegan and unit. arXiv preprint
arXiv:1806.07777 (2018)

14. Zhu, J.Y., et al.: Unpaired image-to-image translation using cycle-consistent adver-
sarial networks. In: CVPR, pp. 2223–2232 (2017)

5 Unified multi-contrast MR neuroimage synthesis and its clinical validation

88



D
ow

nloaded
from

http://journals.lw
w
.com

/investigativeradiology
by

BhD
M
f5ePH

KbH
4TTIm

qenVA12W
bTIG

zqkk9zLjXsy4bM
N
6Q

55aP35+9C
M
N
6tSw

X3VgVXG
6xppksg=

on
05/03/2020

Downloadedfromhttp://journals.lww.com/investigativeradiologybyBhDMf5ePHKbH4TTImqenVA12WbTIGzqkk9zLjXsy4bMN6Q55aP35+9CMN6tSwX3VgVXG6xppksg=on05/03/2020

Deep-Learning Generated Synthetic Double Inversion Recovery
Images Improve Multiple Sclerosis Lesion Detection

Tom Finck, MD,* Hongwei Li, PhD,† Lioba Grundl, MD,* Paul Eichinger, MD,* Matthias Bussas, PhD,‡§
Mark Mühlau, MD,‡§ Bjoern Menze, PhD,† and Benedikt Wiestler, MD*†

Objectives: The aim of the studywas to implement a deep-learning tool to produce

synthetic double inversion recovery (synthDIR) images and compare their diagnos-

tic performance to conventional sequences in patients with multiple sclerosis (MS).

Materials andMethods: For this retrospective analysis, 100 MS patients (65 fe-

male, 37 [22–68] years) were randomly selected from a prospective observational

cohort between 2014 and 2016. In a subset of 50 patients, an artificial neural net-

work (DiamondGAN) was trained to generate a synthetic DIR (synthDIR) from

standard acquisitions (T1, T2, and fluid-attenuated inversion recovery [FLAIR]).

With the resulting network, synthDIR was generated for the remaining 50 sub-

jects. These images aswell as conventionally acquiredDIR (trueDIR) and FLAIR

images were assessed for MS lesions by 2 independent readers, blinded to the

source of the DIR image. Lesion counts in the different modalities were compared

using a Wilcoxon signed-rank test, and interrater analysis was performed.

Contrast-to-noise ratios were compared for objective image quality.

Results: Utilization of synthDIR allowed to detect significantly more lesions

compared with the use of FLAIR images (31.4 ± 20.7 vs 22.8 ± 12.7,

P < 0.001). This improvement was mainly attributable to an improved depiction

of juxtacortical lesions (12.3 ± 10.8 vs 7.2 ± 5.6, P < 0.001). Interrater reliability

was excellent in FLAIR 0.92 (95% confidence interval [CI], 0.85–0.95),

synthDIR 0.93 (95% CI, 0.87–0.96), and trueDIR 0.95 (95% CI, 0.85–0.98).

Contrast-to-noise ratio in synthDIR exceeded that of FLAIR (22.0 ± 6.4 vs

16.7 ± 3.6, P = 0.009); no significant difference was seen in comparison to

trueDIR (22.0 ± 6.4 vs 22.4 ± 7.9, P = 0.87).

Conclusions: Computationally generated DIR images improve lesion depiction

compared with the use of standard modalities. This method demonstrates how ar-

tificial intelligence can help improving imaging in specific pathologies.

Key Words: artificial intelligence, deep learning,

generative adversarial networks, multiple sclerosis, double inversion recovery

(Invest Radiol 2020;55: 318–323)

M ultiple sclerosis (MS) is the most common nontraumatic cause of
disability in young adults with accelerating rates of new diagno-

ses over the past decades.1 Recently, data have accumulated demon-
strating neuronal loss and early-onset atrophic brain changes in
patients suffering fromMS.2,3As the regenerative potential of brain tis-
sue is per se limited and decreases with age, it is important to attenuate
disease activity as early as possible in order to avoid nonrepairable

damage. Both delayed initial diagnosis as well as an undetected pro-
gression under treatment can negatively impact the prognosis of pa-
tients.4,5 Magnetic resonance imaging has proven to be a valuable tool
in detecting and evaluating progression of MS-related brain lesions and is
tightly integrated into current guidelines.6 Although fluid-attenuated inver-
sion recovery (FLAIR) is arguably themost widespread sequence used to as-
sess brain lesions, technical advances have led to the development of double
inversion recovery (DIR) acquisitionwith a higher sensitivity for lesiondetec-
tion than conventional or fluid-attenuated T2-weighted acquisitions.7 As it
has recently become clear that (juxta)cortical plaques play an important role
inMS and appear in early stages of the disease, the particular strength ofDIR
to detect these kinds of lesions is becoming more and more relevant from a
clinical point of view.8–11 Beyond the better conspicuity of (juxta)cortical le-
sions, DIR facilitates automated detection of lesions compared with standard
sequences and thus seems better suited for segmentation tasks.12,13However,
the time-consuming acquisition of DIR has hindered the widespread
implementation of this technique in daily routine. In view of this limita-
tion, synthesizing DIR from routinely acquired MR sequences with the
aid of deep-learning tools, such as recently proposed generative adver-
sarial networks (GAN), seems promising.14 Reliable image synthesis
with the here-proposed DiamondGAN (generative adversarial network
with a diamond-shaped topology) has already been validated from a
technical perspective.15

An important aspect of DiamondGAN is its ability to augment
image information via multi-to-one mapping, that is, to use several in-
put sequences (in this case T1, T2, and FLAIR) to generate one output
modality (in this case DIR). This enables DiamondGAN to learn syner-
gistic combinations of image information from multiple input se-
quences and thus improves the output. In a prior work describing the
technical background of DiamondGAN, we have shown DIR images
of healthy controls, either acquired or synthesized, to 14 neuroradiolo-
gists and asked for their visual evaluation of both modalities.15 Blinded
to the origin of these images, they were unable to differentiate if the
shown modality was acquired (trueDIR) or synthetic (synthDIR).

Whether GANs only create realistic looking images or whether
these images indeed carry a surplus of clinically relevant information
is however yet to be shown. We therefore investigated the hypothesis
that synthDIR augments background image information from FLAIR,
T1, and T2 and thus improves lesion depiction in MS patients.

MATERIALS AND METHODS

Scan Acquisition
This study design was approved by the local institutional review

board, and informed consent was obtained from all patients. MR
datasets from 100 randomly selected patients with diagnosed MS were
retrospectively collected from a prospectively collected observation co-
hort from August 2014 to March 2016 and included T1 (2:25 minutes
acquisition time), T2 (3:17 minutes acquisition time), FLAIR (3:55 mi-
nutes acquisition time), and DIR (6:31 minutes acquisition time) se-
quences. Scans were performed on a 3-T scanner (Philips Achieva
3.0 T; Philips Healthcare, Eindhoven, the Netherlands). Identical pa-
rameters in all patients were chosen for T1 (repetition time = 9 millisec-
onds, echo time = 4.0 milliseconds, flip angle = 8 degrees, acquired in the
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sagittal plane with isotropic voxel size of 1 mm3), T2 (repetition
time=4000milliseconds, echo time=35.0milliseconds, flipangle=90de-
grees, acquired in the sagittal plane with isotropic voxel size of 1 mm3),
FLAIR (repetition time = 10,000milliseconds, echo time = 140.0millisec-
onds, inversion time = 2750 milliseconds, flip angle = 90 degrees, ac-
quired in the sagittal plane with isotropic voxel size of 1 mm3), and DIR
(repetition time = 5500 milliseconds, echo time = 321.6 milliseconds, in-
version time=2550millisecondsand2990milliseconds, flipangle=90de-
grees, acquired in the sagittal plane with isotropic voxel size of 1 mm3).

DIR Synthesis With GAN
The basic principle of DiamondGAN is to synthesize a target

magnetic resonance imaging modality T given a set of n input modali-
ties X = {xi|i = 1,…,n}. The goal of the synthesis task is to learn a mo-
dality generator G such that G(X) = T. The DiamondGAN pipeline
contains 2 networks: a generator G and a discriminator D, built on con-
ventional GAN techniques.16G contains 2 generatorsG1 andG2 that si-
multaneously learn the mappings from X→ T and T→ X, respectively.
D consists of 2 discriminators D1 and D2. D1discriminates the real im-
ages from source domain and synthetic images from G1, whereas D2

discriminates the real images from target domain and synthetic images
from G2. In this adversarial learning process, the 4 networks are simul-
taneously optimized to generate high-quality images. G and D are var-
iants of convolutional neural networks and optimized with multiple loss
functions in an end-to-end fashion, as explained before.15 One helpful
property of publicly available DiamondGAN (https://github.com/
hongweilibran/DiamondGAN/) is that it does not require the input
and output to be strictly spatially aligned, by mapping the inputs to la-
tent spaces and optimizing the generator networks by a cycle-
consistency loss function as explained in Hongwei et al.15Conventional
regression approaches require the input and output to be strictly spa-
tially aligned. However, in practice, registration methods cannot guar-
antee such pixel-to-pixel alignment properly between the input and
output image spaces.17 A schematic overview illustrating the architec-
ture of DiamondGAN is given in Figure 1.

We hypothesize that a large portion of information in an individ-
ual MR sequence is also contained (albeit possibly hidden) in other se-
quences and that DIR can be reconstructed given the combination of
FLAIR, T1, and T2. The 3D volumes of these sequences are parsed into
2D axial slices. The concatenation of FLAIR, T1, and T2 axial slices is
fed to train the network while synthDIR slices are the output. Techni-
cally, the network does not necessarily require 3D acquisitions for the
sequences, but the acquisition should be consistent (either 2D or 3D)

FIGURE 1. A schematic view of the proposed image synthesis system using generative adversarial networks, including 2 image generators and 2 image
discriminators. The 4 networks are simultaneously optimized to generate high-quality images.

FIGURE 2. Exemplary images of FLAIR, synthDIR, and trueDIR from the
same patient. Given are sets of slices in the sagittal and axial plane with
their respective lesion segmentations. Notable is the improved ability to
detect juxtacortical lesions (green arrows) in synthDIR compared with
(input) FLAIR.

TABLE 1. Patient Characteristics

Training Set Testing Set P

n 50 50 1

Age 38.5 ± 9.2 36.4, 11.0 0.30

Sex 18 (36) 17 (34) 0.84

% RRMS 45 (90%) 46 (92%) 0.73

Disease duration 5.7 ± 4.6 5.8 ± 4.0 0.91

EDSS 1.5 (1.0–2.5) 1.5 (0–2.0) 0.61

Given are key clinical parameters for the training and testing set of the included
100 patients. RRMS indicates relapsing-remitting multiple sclerosis; EDSS, Ex-
panded Disability Status Scale.
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among the input modalities. FiftyMS patients with complete sequences
are used to train the model. The generator model contains 7,218,987 pa-
rameters and is trained for 12 hours with a high-end graphic card
(NVIDIA Titan V, Santa Clara, CA). In the inference stage, we take
FLAIR, T1, and T2 slices as the input and synthesize the DIR slices.
Then the DIR slices are normalized by histogram matching and spa-
tially concatenated into 3D volumes. Because the axial slices on top
or bottom do not contain brain structures, we synthesize the middle
slices with brain structure after empirically setting a starting and ending
threshold. Exemplary sets of FLAIR, synthDIR, and trueDIR with their
respective lesion segmentations are given in Figure 2.

Expert Readings
In accordance with the current imaging criteria to diagnose

MS, we did not distinguish between juxtacortical and cortical

lesions.18 For simplicity, we will therefore refer to both types of le-
sions as juxtacortical lesions.

All 150 datasets (50 test patients with FLAIR, trueDIR, and
synthDIR) were visually assessed by 2 neuroradiologists (both with
3 years of experience) for the number of juxtacortical, periventricular,
infratentorial, and subcortical white matter lesions, having a minimum
diameter of 3 mm in any direction. Manual lesion count was done inde-
pendently using an open-source 3D image analysis tool,19 and the order
of investigated modalities was randomly altered to prevent a learning
effect. The readers were blinded for the nature of DIR modalities
(trueDIR or synthDIR) and had no clinical background information
on patients except for the fact that prior diagnosis of MS had been
made. Each lesion in synthDIRwas retrospectively validated in trueDIR
by one rater to exclude that false-positive lesions had been generated
during the synthetization process.

Lesion Contrast
To assess image quality of the modalities, we calculated the

contrast-to-noise ratio (CNR) for a randomly selected subset of
15 patients: in each patient, 1 or 2 representative lesions were manually
segmented on the T2 image (to avoid bias), and equally sized regions of
interest were placed in the contralateral normal-appearing white matter
(NAWM) using open-source 3D image analysis tool.19 From the
coregistered modalities, CNR was calculated for FLAIR, synthDIR,
and trueDIR as:

CNR ¼

MeanSignalLesions−MeanSignalNAWM

SDNAWM

Statistical Analysis
Same counts of lesions in FLAIR (that was used as input modal-

ity) and synthDIR was defined as null hypothesis. The normality of dis-
tribution was violated as tested by the D'Agostino-Pearson test. Lesion
counts from the 3 investigated modalities were compared with a
Wilcoxon signed-rank test; CNR between the investigated modalities
was compared with a paired Student t test.

Interrater reliability was assessed with the intraclass correlation
coefficient (ICC) (use of single measurements for absolute agreement
in a 2-way random model).

Statistical computations were performed with software (SPSS
Statistics for Windows, version 25.0; IBM, Armonk, NY). P < 0.05
was considered statistically significant.

RESULTS
Patient characteristics for the training and test set are given in

Table 1. No significant differences in clinical parameters were observed.

TABLE 2. Lesion Count (Mean ± Standard Deviation) as Well as ICCs (With 95% CI) for Both Readers and All Acquistions/Locations

Periventricular Juxtacortical

FLAIR synthDIR trueDIR FLAIR synthDIR trueDIR

R1 counts 13.6 ± 9.35 16.7 ± 12.8 18.8 ± 14.3 7.2 ± 5.55 12.3 ± 10.8 14.7 ± 13.1

R2 counts 10.7 ± 8.36 13.0 ± 12.7 17.8 ± 15.1 3.7 ± 3.45 7.4 ± 9.6 11.1 ± 13.1

ICC 0.93 (0.88–0.96) 0.95 (0.91–0.97) 0.96 (0.93–0.98) 0.82 (0.68–0.90) 0.90 (0.82–0.94) 0.95 (0.91–0.97)

Infratentorial Subcortical

FLAIR synthDIR trueDIR FLAIR synthDIR trueDIR

R1 counts 2.0 ± 1.68 2.4 ± 2.2 2.6 ± 2.2 12.1 ± 10.2 15.1 ± 10.8 15.8 ± 11.7

R2 counts 0.9 ± 1.26 1.3 ± 2.2 1.4 ± 1.6 14.6 ± 11.3 16.5 ± 12.2 18.8 ± 13.2

ICC 0.48 (0.07–0.70) 0.87 (0.78–0.93) 0.81 (0.66–0.89) 0.92 (0.87–0.96) 0.89 (0.81–0.94) 0.91 (0.83–0.95)

ICC indicates intraclass correlation coefficient; CI, confidence interval; FLAIR, fluid-attenuated inversion recovery; synthDIR, synthetic double inversion recovery;
trueDIR, conventionally acquired DIR; R, reader.

FIGURE 3. Contrast-to-noise ratios for FLAIR, synthDIR, and trueDIR.
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Interrater reliability was excellent with intraclass correlation co-
efficients between both raters ranging from 0.92 (95% confidence inter-
val [CI], 0.85–0.95) for FLAIR to comparable levels of 0.93 (95% CI,
0.87–0.96) and 0.95 (95% CI, 0.85–0.98) for synthDIR and trueDIR,
respectively. Intraclass correlation coefficients between both readers
as a function of lesion localization are given in Table 2.

Quantitative assessment of image contrast (lesion vs NAWM)
in a subset of 15 randomly selected patients revealed a significantly
better CNR for synthDIR compared with FLAIR (22.0 ± 6.4 vs
16.7 ± 3.6, P = 0.009), matching the CNR of trueDIR (22.0 ± 6.4 vs
22.4 ± 7.9, P = 0.87; Fig. 3).The mean count of MS-specific lesions
(juxtacortical + periventricular + infratentorial) per patient was signifi-
cantly higher in synthDIR than FLAIR (31.4 ± 20.7 vs 22.8 ± 12.7,
P < 0.001; location-dependent lesion counts for both readers are given
in Table 3; counts of MS-specific lesions are further shown in Fig. 4).
Worth mentioning is the fact that the improved performance of
synthDIR compared with FLAIR could be primarily attributed to
better detection of juxtacortical lesions (12.3 ± 10.8 vs 7.2 ± 5.6,
P < 0.001). Both observations held true when analyzing lesion
counts from the second reader (Table 3).

Consequently, a shift in the proportion of juxtacortical and subcor-
tical lesions was noted as the relative share of juxtacortical lesions from
the total count increased from 16.9% in FLAIR to 23.3% in synthDIR
(P < 0.001), whereas the share of subcortical lesions decreased analo-
gously from 41.2% in FLAIR to 37.3% in synthDIR (P < 0.001).

Although a location-dependent heterogeneity could be noted,
a tendency for improved lesion detection in synthDIR compared
with FLAIR held true irrespective if lesions were juxtacortical,
periventricular, subcortical, or infratentorial (counts for both readers are
given in Table 3). Physically acquired trueDIR trumped both FLAIR
(36.1 ± 24.3 vs 22.8 ± 12.7, P < 0.001) and synthDIR (36.1 ± 24.3 vs
31.4 ± 20.7, P < 0.001) in depicting MS-specific lesions. Retrospective
visual cross-validation showed that therewere no lesions in synthDIR that
could not be detected in trueDIR; hence the possibility of artificial lesion
generation by the GAN could be excluded.

DISCUSSION
We hypothesized that training a GAN with sequences routinely

acquired in MS imaging allows to create synthetic, high lesion-to-
background contrast DIR images. These generated images enabled
the readers to find significantly more lesions compared with the stan-
dard sequence FLAIR.

Further supporting the ability ofDiamondGAN to synergistically
combine input image information to create its output is the fact that the
increase in lesions found in the synthetic DIR compared with FLAIR
was mostly driven by juxtacortical lesions. The DIR acquisition is best
known for its ability to detect this type of lesion, as it has become in-
creasingly clear that juxtacortical lesions play an important role for di-
agnosis and prognosis of MS patients.20–22 By combining information
from FLAIR, T1, and T2 images,DiamondGAN is able to replicate this
strength of DIR images with potentially profound ramifications as initial
diagnosis of MS strongly relies on the robust differentiation between
MS-specific (ie, juxtacortical) non–MS-specific (ie, subcortical) lesions.

Beyond the methodological innovation of using complimentary
aspects of different acquisitions (T1, T2, FLAIR) to generate output
(synthDIR), such pronounced differences in lesion detection can have
clinical implications for the monitoring of a disease that is tightly linked
to the dynamics of inflammatory lesions. Recent studies have highlighted
the potential of DIR inmonitoringMS progression and stress the urgency
to use this acquisition more broadly and prospectively wean our depen-
dency on gadolinium scans.22 In light of the time-consuming physical ac-
quisition of DIR, artificial intelligence (AI) could be the key to facilitate
its wider implementation inMS imaging. Even as the physically acquired
DIR still outperformed the synthetic DIR, it needs to be said that the in-
formation content in synthDIR was nevertheless superior to that of input
FLAIR and can potentially be improved with future improvements of
GAN training and input combinations.

Beyond the subjective lesion analysis, quantification of CNR
confirms the data augmentation taking place within DiamondGAN, a
publicly available AI tool, and provides proof for the similitude between
synthDIR and trueDIR in depicting white-matter lesions.

TABLE 3. Location-Dependent Lesion Count Differences, Discerned for Periventricular, Juxtacortical, Infratentorial, and Subcortical Lesions, as
well as a Composite of All MS-Specific Lesions (Juxtacortical + Periventricular + Infratentorial)

MS-Specific

Lesions

(PV + JC + IT) P

Periventicular

Lesions P

Juxtacortical

Lesions P

Infratentorial

Lesions P

Subcortical

Lesions P

Reader 1

FLAIR vs synthDIR 22.8 ± 12.7 <0.001* 13.6 ± 9.35 <0.001* 7.2 ± 5.55 <0.001* 2.0 ± 1.68 0.017* 12.1 ± 10.2 <0.001*

31.4 ± 20.7 16.7 ± 12.8 12.3 ± 10.8 2.4 ± 2.2 15.1 ± 10.8

FLAIR vs trueDIR 22.8 ± 12.7 <0.001* 13.6 ± 9.35 <0.001* 7.2 ± 5.55 <0.001* 2.0 ± 1.68 <0.001* 12.1 ± 10.2 <0.001*

36.1 ± 24.3 18.8 ± 14.3 14.7 ± 13.1 2.6 ± 2.2 15.8 ± 11.7

synthDIR vs trueDIR 31.4 ± 20.7 <0.001* 16.7 ± 12.8 0.002* 12.3 ± 10.8 0.004* 2.4 ± 2.2 0.14 15.1 ± 10.8 0.10

36.1 ± 24.3 18.8 ± 14.3 14.7 ± 13.1 2.6 ± 2.2 15.8 ± 11.7

Reader 2

FLAIR vs synthDIR 15.3 ± 10.4 0.026* 10.7 ± 8.36 0.29 3.7 ± 3.45 0.0011* 0.86 ± 1.26 0.13 14.6 ± 11.3 0.074

21.7 ± 20.8 13.0 ± 12.7 7.4 ± 9.6 1.3 ± 2.2 16.5 ± 12.2

FLAIR vs trueDIR 15.3 ± 10.4 <0.001* 10.7 ± 8.36 <0.001* 3.7 ± 3.45 <0.001* 0.86 ± 1.26 0.0027* 14.6 ± 11.3 <0.001*

30.3 ± 23.8 17.8 ± 15.1 11.1 ± 13.1 1.4 ± 1.6 18.8 ± 13.2

synthDIR vs trueDIR 21.7 ± 20.8 <0.001* 13.0 ± 12.7 <0.001* 7.4 ± 9.6 <0.001* 1.3 ± 2.2 0.31 16.5 ± 12.2 0.0018*

30.3 ± 23.8 17.8 ± 15.1 11.1 ± 13.1 1.4 ± 1.6 18.8 ± 13.2

Counts are given for readers 1 and 2. *Significant results are highlighted.

MS indicates multiple sclerosis; PV, periventricular; JC, juxtacortical; IT, infratentorial; FLAIR, fluid-attenuated inversion recovery; synthDIR, synthetic double inver-
sion recovery; trueDIR, conventionally acquired DIR.
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Although ongoing scientific advances, be it the improvement of im-
age resolution, use of experimental methods such asMR-fingerprinting, or
inclusion of spectroscopy findings, pave theway for improving diagnostics
inMS, the utilization ofAI in chronic inflammatory brain disease has in the
majority of cases been restricted to quantitative analyses such as lesion
segmentation.23–26 The here-presented study provides a different approach
as it does not focus on interpreting available images but explores the pros-
pect of augmenting intrinsic, yet not necessarily visual information within
an MR dataset. Similar approaches may further open the door for data ho-
mogenization through synthetization of a “standardized”MR dataset from
heterogenous input data or generation of artificial imaging sets to feed
deep-learning algorithms.

A further advantage of GANs is their applicability to existing data.
This is in contrast to technical developments such as new sequences or
hardware, which can only be applied prospectively and offers a unique
chance to retrospectively validate findings that might become apparent af-
ter implementation of a more sensitive imaging protocol.27

One general limitation of this study is the relatively small
sample size of only 100 patients. Further, the single-center setting
with all scans originating from one MR scanner rendered state-
ments about the generalizability impossible. Using GANs for data

homogenization by synthesizing a standardized input dataset irre-
spective of the source data is however one potential remedy worth ex-
ploring. In addition, the input acquisitions used in our study (T1, T2,
and FLAIR) all depict MS lesions, thus a large portion of information
from the individual acquisition is redundant. Therefore, it remains to
be studied whether satisfying synthetic images can be derived already
from a subset of these acquisitions. Moreover, the value of alternative
input acquisitions than the ones used in the present study has yet to
be investigated.

In summary, we have demonstrated the ability of artificial neural
networks to create high contrast images from standard input, thereby
significantly improving lesion detection in MS patients. Future studies
investigating generalizability and optimal sequence combinations for
image synthesis seem warranted.
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6 Lesion-specific, uncertainty-aware, and

domain-adaptive image synthesis

This chapter has been published as one peer-reviewed journal publication and one peer-

reviewed conference publication:

[1] T. Finck*, H. Li*, S. Schlaeger, L. Grundl, N. Sollmann, B. Bender, E. Bürkle, C. Zimmer,
J. Kirschke, B. Menze, et al. “Uncertainty-aware and lesion-specific image synthesis in multiple
sclerosis magnetic resonance imaging: a multicentric validation study”. In: Frontiers in

Neuroscience 16 (2022)

[2] Q. Hu*, H. Li*, and J. Zhang. “Domain-adaptive 3D medical image synthesis: an effi-
cient unsupervised approach”. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI) (2022), pp. 495–504

Synopsis: The above two works develop uncertainty-aware, lesion-specific and domain-adaptive
neuroimage synthesis approaches. Specifically, publication ♯1 develops a novel generative adverar-
ial network and a new loss function to provide uncertainty estimation and improve the synthesis
quality of lesions. Furthermore, it is validated in a multi-center setting and demonstrates the
effectiveness in MS lesion detection. Publication ♯2 explores domain adaptation for generative
adversarial networks. First, it highlights the technical difference among the adaptation of image
classification, image segmentation and image synthesis tasks. Second, it develops an efficient
domain adaptation approach for 3D image synthesis based on 2D variational auto-encoder.

Contributions of thesis author: algorithm design and implementation, computational
experiments and composition of manuscript.
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Generative adversarial networks (GANs) can synthesize high-contrast MRI from lower-

contrast input. Targeted translation of parenchymal lesions in multiple sclerosis (MS),

as well as visualization of model confidence further augment their utility, provided

that the GAN generalizes reliably across different scanners. We here investigate the

generalizability of a refined GAN for synthesizing high-contrast double inversion recovery

(DIR) images and propose the use of uncertainty maps to further enhance its clinical

utility and trustworthiness. A GAN was trained to synthesize DIR from input fluid-

attenuated inversion recovery (FLAIR) and T1w of 50 MS patients (training data).

In another 50 patients (test data), two blinded readers (R1 and R2) independently

quantified lesions in synthetic DIR (synthDIR), acquired DIR (trueDIR) and FLAIR. Of

the 50 test patients, 20 were acquired on the same scanner as training data (internal

data), while 30 were scanned at different scanners with heterogeneous field strengths

and protocols (external data). Lesion-to-Background ratios (LBR) for MS-lesions vs.

normal appearing white matter, as well as image quality parameters were calculated.

Uncertainty maps were generated to visualize model confidence. Significantly more

MS-specific lesions were found in synthDIR compared to FLAIR (R1: 26.7 ± 2.6 vs.

22.5 ± 2.2 p < 0.0001; R2: 22.8 ± 2.2 vs. 19.9 ± 2.0, p = 0.0005). While trueDIR

remained superior to synthDIR in R1 [28.6 ± 2.9 vs. 26.7 ± 2.6 (p = 0.0021)], both

sequences showed comparable lesion conspicuity in R2 [23.3 ± 2.4 vs. 22.8 ± 2.2

(p = 0.98)]. Importantly, improvements in lesion counts were similar in internal and

external data. Measurements of LBR confirmed that lesion-focused GAN training

significantly improved lesion conspicuity. The use of uncertainty maps furthermore
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helped discriminate between MS lesions and artifacts. In conclusion, this multicentric

study confirms the external validity of a lesion-focused Deep-Learning tool aimed at

MS imaging. When implemented, uncertainty maps are promising to increase the

trustworthiness of synthetic MRI.

Keywords: magnetic resonance imaging, neuroradiology, multiple sclerosis, deep learning – artificial neural

network (DL-ANN), double inversion recovery (DIR), synthetic MRI, artificial intelligence (AI)

INTRODUCTION

Magnetic resonance imaging (MRI) plays a central role
in the management of patients with multiple sclerosis
(MS), a neuroinflammatory disease with rising incidence
that remains the most common cause of non-traumatic
disability in the young (GBD 2016 Multiple Sclerosis
Collaborators, 2019). MRI techniques have been developed
to detect specific aspects of MS pathophysiology; double
inversion recovery (DIR) imaging is exemplary of a
sequence that improves lesion detection, in particular
within the juxtacortical region. Through numerous studies,
the superiority of DIR compared to established MRI
sequences such as T2w or fluid-attenuated inversion
recovery (FLAIR) sequences in depicting inflammatory
white matter lesions has been validated (Geurts et al.,
2005; Wattjes et al., 2007). Lengthy acquisition times and
high technical requirements have, however, hindered the
widespread use of DIR.

Recently, it has been shown that synthesizing DIR images
with generative adversarial networks (GANs), a deep learning
(DL) architecture with great potential for image synthesis, is
feasible and improves lesion detection compared to FLAIR
and T2w sequences (Finck et al., 2020; Bouman et al.,
2021). Nonetheless, and in particular as MS lesions typically
are small, GANs are at risk to synthesize images of high
morphologic similarity to the target image, while failing
to translate the clinically important MS lesions. Domain
knowledge, i.e., the ability of a GAN to learn about the
pathology-specific anomalies it should map, might open the
door for further customization and improvements in this
regard. Various classification tasks, from the categorization
of breast lesions to the detection of malignant thyroid
nodules have thus already been improved by complementing a
network’s training stage with domain knowledge (Feng et al.,
2020; Avola et al., 2021). The underlying study is to our
knowledge the first to investigate this knowledge-driven GAN
approach in MS imaging.

The value of machine learning (ML) tools generally hinges
on their ability to remain accurate when deployed to data

Abbreviations: MRI, magnetic resonance imaging; MS, multiple sclerosis; DIR,
double inversion recovery; FLAIR, fluid-attenuated inversion recovery; GAN,
generative adversarial network; DL, deep learning; ML, machine learning; AI,
artificial intelligence; synthDIR, synthetic double inversion recovery; trueDIR,
physically acquired double inversion recovery; SSIM, structural similarity index
measure; LST, lesion segmentation tool; JC, juxtacortical; PV, periventricular;
IT, infratentorial; SC, subcortical; LBR, lesion-to-background ratios; LFL, lesion-
focused loss; NAWM, normal appearing white matter; PSNR, peak signal-to-noise
ratio; ICC, intraclass correlation coefficient.

that is of different structure from the training data, making
multicentric validation a mandatory prerequisite. Also, building
trust in artificial intelligence (AI) is oftentimes hindered because
the decision-making process is concealed to the user who
can only accept or discard a binary output (Asan et al.,
2020). Hence, providing visibility into how an ML system
makes predictions has become a major concern, especially
in the medical domain (Quinn et al., 2022). This can be
achieved either by providing insights into the “black-box”
problem of DL systems that are inherently uninterpretable
by the human operator or by designing networks that are
inherently interpretable but generally less potent (i.e., linear
regression, decision-trees). Neural networks are a hallmark
of the “black-box” problem as decisions are made through
nonlinear associations between input and output, thus remaining
opaque to the human reader. Improved interpretability can
be achieved by decreasing the complexity of such networks
(i.e., reducing the amount of neural connections), at the
potential cost of performance loss, or through uncertainty
measurements of the decision-making process (Le et al., 2020).
By providing uncertainty maps that quantify the decision-
making confidence of a GAN, the acceptance of synthetic
MRI by the medical community might be improved while
also offering clearer insights into potential causes for a
system’s malfunctioning. Uncertainty maps can be estimated
by analysis of the variance across iterations during image
synthesis, which has of late become an area of increasing
interest (Gal and Ghahramani, 2015; Watson et al., 2019).
Visualization of model confidence in GAN-mediated synthesis
of MRI has been done before in tasks such as artificial
motion-artifact inclusion or age prediction in fetal MRI (Shaw
et al., 2020; Shi et al., 2020). In contrast to these works,
we aim to quantify model confidence in translating areas
of pathology that only constitute a small fraction of the
generated data volume.

This study presents a refined GAN framework with
an architecture that includes a task-specific training
objective for MS lesion translation. We hypothesize
that this GAN-based approach can provide synthetic,
high-contrast DIR images from routinely acquired
input FLAIR and T1w data, thereby removing the
need for time-intensive acquisition of DIR. A special
focus of this study is to evaluate this task-specific
network for external validity in a multicenter dataset
with scanners from different vendors and different
acquisition details. To further provide an insight into
the decision-making process of the GAN and guide
the reviewing clinician toward potential artifacts, we
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calculated uncertainty maps that reflect the variance in
image-to-image translation.

MATERIALS AND METHODS

Patients
The study design was approved by the local IRBs and informed
consent was obtained from all patients at their respective centers
prior to scan acquisition.

Training Data
Data for model training were retrospectively retrieved from
50 patients with diagnosed MS and included T1w (2:28 min),
FLAIR (3:55 min), and DIR (6:31 min). All scans originated
from the same scanner (Ingenia 3.0T, Philips Healthcare, Best,
Netherlands). Sequence parameters were identical in all patients
for T1w (TR of 9.0 ms, TE of 4.0 ms, flip angle of 8◦, acquired in
the sagittal plane with an isotropic voxel size of 1 mm3), FLAIR
(TR of 4,800 ms, TE of 331 ms, TI of 1,650 ms, flip angle of
90◦, acquired in the sagittal plane with an isotropic voxel size of
1 mm3), and DIR (TR of 5,500 ms, TE of 355.9 ms, TI of 2,550 ms
and 2,990 ms, flip angle of 90◦, acquired in the sagittal plane with
an isotropic voxel size of 1.1 mm3).

Testing Data
Sixty MRI scans from 50 consecutive patients (20:20:10 for
centers 1:2:3, respectively) with diagnosed MS were included. For
centers 1 and 2, 1 scan/patient was sampled, while baseline and
follow-up exams for 10 patients from center 3 were considered.
MRI data included T1w, FLAIR, and DIR and were acquired
on both, 3.0T and 1.5T scanners. In detail, testing data from
center 1 was acquired on the same hardware and using the same
protocol as the training data (Ingenia 3.0T, Philips Healthcare,
Best, Netherlands), testing data from center 2 originated from
a different 3.0T scanner from the same manufacturer (Achieva
3.0T, Philips Healthcare, Best, Netherlands), and testing data
from center 3 was acquired on 1.5T and 3.0T scanners from a
different manufacturer (Skyra 3.0T, Avanto_fit 1.5T, and Aera
1.5T, Siemens Healthineers, Erlangen, Germany).

Sequence parameters for T1w, FLAIR, and DIR sequences
were chosen according to the site-specific parameters optimized
for routine clinical imaging and not modified during the retrieval
period (Supplementary Table 1). Dichotomization of data from
centers 1–3 was made to acknowledge the fact that data structure
from (1) corresponded to the training data (prospectively
referred to as “internal data”), while the data structure from (2)
and (3) was unknown to the network (prospectively referred
to as “external data”). Table 1 illustrates how the data was
categorized for evaluation.

Double Inversion Recovery Image
Synthesis
Network Architecture

Our GAN extends the existing “pix2pix” method (Isola et al.,
2017) and is trained to synthesize a target image y (resembling

TABLE 1 | Data from center 1 was acquired on the same hardware as training

data and thus considered to be of known structure (= internal data).

Data class (number of image sets) Classes for study evaluation

Training data (n = 50)

Test data from (1) (n = 20) Internal data (Known data structure)

Test data from (2) (n = 20) External data (Unknown data structure)

Test data from (3) (n = 20) External data (Unknown data structure)

In analogy, data from centers 2 and 3 were acquired on different hardware and

considered to be of unknown structure (= external data).

the true target image Y) given a set of input images X and
a lesion segmentation mask S. In this setting, two networks
compete with each other: The generator G is based on a U-Net
architecture and synthesizes the target DIR images (synthDIR)
from two input images (T1w and FLAIR), while the discriminator
D tries to determine if a given DIR image is synthetic (synthDIR)
or physically acquired (trueDIR). The network architecture and
training process of the GAN are given in Figure 1. Importantly,
the input of T1 and FLAIR images are fed to U-Net to generate
DIR images while the lesion mask is only used to compute
additional lesion-specific loss during the training stage (see
below). Thus the lesion segmentation mask S is not required
during inference.

Loss Functions

The discriminator gives the judgment about how realistic the
local structures are (called “Patch GAN”), and is patch-based
and driven by a least-square error (L2) loss function (Mao et al.,
2019). The generator is trained on a composite loss function
based on (a) the reconstruction error between the synthesized
image and the target image using SSIM and (b) the output
of the discriminator when judging if a given image is either
ground truth or synthetic. In addition to an SSIM, a peculiarity
of our model is that an additional loss focusing on the successful
translation of MS lesions was developed. In order to focus the
model on MS lesions (which only make up a minority of voxels
in an image), an additional L1 loss term is calculated between
the true and synthetic DIR images after multiplying both images
with the lesion segmentation mask S, thus only considering the
translation of MS lesions for this part of the loss. The image
reconstruction loss for the generator G, the loss function for the
discriminator D, and the total loss function were formulated as
follows, respectively:

Lrecons = 1 − SSIM (Y, G (X)) + λ1 ∗ ||(Y − G(X)) ⊙ S1||

(1)

L D = EX {||1 − D(X)||2} (2)

Ltotal = λ2 ∗ Lrecons + LD (3)

Here, λ1 and λ2 are hyper-parameters and set to 1 and 10,
respectively, which balances the two loss components.

Optimization

The input and output images were co-registered, skull-stripped,
linearly transformed into the MNI152 space, and resampled
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FIGURE 1 | Architecture, training process, and inference of the image synthesis task. The image Generator G uses the combination of FLAIR and T1w as input to

generate synthDIR. The additional supervision from the lesion maps in the training stage drives an enhanced translation of MS-specific lesions (lesion attention). The

feedback on the similarity between synthDIR and trueDIR is given by the Discriminator D and a structure similarity loss function and it updates the network weights

until the loss function to discern both image pairs is minimal. During the inference stage, the trained generator G can generate the synthDIR and an uncertainty map

showing the confidence of the output relating to each voxel. Uncertainty maps are calculated from the voxel-wise variances in signal intensities, as explained in the

section “Materials and Methods”.

to 1 mm isotropic resolution. As excellent correlation between
automated and manual segmentation performance has been
shown before, lesion segmentation maps were created using
the Lesion Segmentation Tool (LST) (Schmidt et al., 2012). By
including domain knowledge (in the form of lesion segmentation
on FLAIR images) into the image translation during training,
we enforced the model to pay attention to the lesion area by
minimizing the difference between ground-truth images and
synthetic images. In practice, such segmentation maps can be
also provided by manual segmentation or other automated
lesion segmentation tools (Schmidt et al., 2012; Li et al., 2018).
Exemplary cases of all investigated sequences are shown in
Figure 2. Training was carried out with a batch size of 1
for a total of 150 epochs, using the Adam optimizer with a
learning rate of 0.001. During training, random intensity (gamma
correction and gaussian blurring) and spatial (shifting and
flipping) augmentations were performed. The best-performing
model was selected using an internal validation set consisting of
10% of the training images.

The generated model is publicly available at https://figshare.
com/articles/software/synthDIR/16607831.

Expert Readings
A dataset of 180 scans, comprising 60 sets each for FLAIR,
synthDIR, and trueDIR, was investigated for lesion counts
by two neuroradiologists (R1 with 5 years of experience in
neuroradiological imaging, R2 with 3 years of experience
in neuroradiological imaging) in a random order. Readers
were blinded to scanner types and sequence labels. The
number of juxtacortical (JC), periventricular (PV), infratentorial
(IT), and subcortical (SC) lesions, in accordance with the
2017 McDonald criteria, were counted (Thompson et al.,
2018). JC, PV, and IT lesions were considered to be MS-
specific (Thompson et al., 2018). Albeit known to constitute

different pathophysiological entities, we did not differentiate
between cortical and juxtacortical lesions as this approach best
reflects current guidelines (Bo et al., 2003; Thompson et al.,
2018).

Quantitative Lesion Analysis and
Uncertainty Maps
To quantitatively assess lesion translation, we calculated lesion-
to-background ratios (LBR). Therefore, lesions on FLAIR
and T1w images were segmented using LST, and tissue
segmentation of T1w images was performed using ANTs
Atropos (Avants et al., 2011). For comparison of LBR, GAN
iterations with and without the above-stated lesion-specific loss
function were computed.

From the segmentation maps, the lesion-to-background ratio
was calculated as:

LBR =
MeanSignallesion

MeanSignalNAWM
(4)

Here, NAWM refers to “normal appearing white matter,”
i.e., non-lesioned white matter. From lesion segmentation maps
and corresponding annotations in the NAWM, the mean signal
intensity was extracted from DIR, FLAIR, and synthDIR images.

To estimate the GAN’s uncertainty in generating
synthDIR images, we performed variational inference
during the test time by using dropout sampling. We
added a dropout layer (dropout rate of 0.3) to the second-
last layer of the U-Net and calculated 100 synthDIR
images per input (Gal and Ghahramani, 2015). From
these 100 iterations, we calculated the variance of voxel-
wise intensities, resulting in the uncertainty map for
visual inspection.
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FIGURE 2 | Exemplary images of FLAIR, trueDIR, and synthDIR for all centers and scanners.

Statistical Analysis
Lesion counts were compared with a Wilcoxon signed-
rank test to account for non-Gaussian distribution and
paired data. LBR was compared with a paired t-test.
Similarity of synthDIR and trueDIR was furthermore
quantitatively assessed by the SSIM (Wang et al., 2004).
For pixelwise comparisons, peak signal-to-noise ratio
(PSNR) was calculated. Interrater agreement was assessed
with the intraclass correlation coefficient (ICC; use of
single measurements for absolute agreement in a two-way
random model) and the related 95% confidence interval
(95% CI). Statistical computations were performed with SPSS
software (SPSS Statistics for Windows, version 25.0; IBM,
Armonk, NY, United States). A p-value < 0.05 was considered
statistically significant.

RESULTS

Interrater Agreement
Consistency between both readers was excellent with ICCs for all
specific (JC + PV + IT) lesions ranging from 0.91 (95% CI: 0.85;
0.94) in FLAIR to 0.90 (95% CI: 0.84; 0.94) in synthDIR and 0.89
(95% CI: 0.83; 0.94) in trueDIR.

Lesion Counts
The study endpoint to improve depiction of MS specific
lesions in synthDIR compared to FLAIR was met by both
readers [26.7 ± 2.6 vs. 22.5 ± 2.2 (p < 0.0001) in R1

and 22.8 ± 2.2 vs. 19.9 ± 2.0 (p = 0.0005) in R2].
TrueDIR outperformed FLAIR in counts of MS-specific lesions
[28.6 ± 2.9 vs. 22.5 ± 2.2 (p < 0.0001) in R1 and
23.3 ± 2.4 vs. 19.9 ± 2.0 (p < 0.0001) in R2]. While
trueDIR remained superior to synthDIR in the depiction
of MS-specific lesions in R1 [28.6 ± 2.9 vs. 26.7 ± 2.6
(p = 0.0021)], both image sets were of comparable diagnostic
value in R2 [23.3 ± 2.4 vs. 22.8 ± 2.2 (p = 0.98)]. Table 2

provides details on total and region-specific lesion counts for
the study cohort.

Analysis of lesion counts as a function of scanner types
revealed comparable effects independent of the structure of input
data (internal or external). Hence, significant improvements in
lesion counts were noted in synthDIR vs. FLAIR for both readers
in external data [27.1 ± 3.4 vs. 22.6 ± 2.8 (p < 0.0001) in R1;
25.1 ± 2.9 vs. 21.5 ± 2.6 (p = 0.0007) in R2] and for R1 in
internal data [26.6 ± 4.3 vs. 22.2 ± 3.6 (p = 0.0029) in R1;
18.1 ± 2.6 vs. 16.6 ± 2.6 (p = 0.27) in R2]. In external data, a
slight improvement in lesion conspicuity was noted in trueDIR
vs. synthDIR for R1 [28.9 ± 3.7 vs. 27.1 ± 3.4 (p = 0.011)] but
not for R2 [25.6 ± 3.3 vs. 25.1 ± 2.9 (p = 0.90)]. Table 3 provides
lesion counts as a function of data source.

To increase the clinical reliability of synthDIR images, voxel-
wise uncertainty maps from 100 forward runs using test-time
dropout for Bayesian approximation were evaluated. For the
majority of lesions, a high model confidence was observed,
i.e., lesions were not highlighted in the uncertainty maps. On
the other hand, artificial hyperintensities in synthetic images
were readily identified by the high model uncertainty on
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TABLE 2 | Lesion counts for all locations and both readers.

All specific P PV lesions P JC lesions P IT lesions P SC lesions P

Reader 1

FLAIR vs. synthDIR 22.5 ± 2.2

vs.

26.7 ± 2.6

< 0.0001 12.0 ± 1.2

vs.

13.9 ± 1.4

< 0.0001 8.7 ± 1.2

vs.

10.8 ± 1.5

< 0.0001 1.9 ± 0.4

vs.

2.2 ± 0.4

0.043 10.6 ± 1.3

vs.

10.4 ± 1.2

0.82

FLAIR vs. trueDIR 22.5 ± 2.2

vs.

28.6 ± 2.9

< 0.0001 12.0 ± 1.2

vs.

13.9 ± 1.4

< 0.0001 8.7 ± 1.2

vs.

12.3 ± 1.7

< 0.0001 1.9 ± 0.4

vs.

2.4 ± 0.4

0.0002 10.6 ± 1.3

vs.

10.9 ± 1.4

0.36

SynthDIR vs. trueDIR 26.7 ± 2.6

vs.

28.6 ± 2.9

0.0021 13.9 ± 1.4

vs.

13.9 ± 1.4

0.91 10.8 ± 1.5

vs.

12.3 ± 1.7

< 0.0001 2.2 ± 0.4

vs.

2.4 ± 0.4

0.33 10.4 ± 1.2

vs.

10.9 ± 1.4

0.66

Reader 2

FLAIR vs. synthDIR 19.9 ± 2.0

vs.

22.8 ± 2.2

0.0005 10.5 ± 1.0

vs.

12.4 ± 1.1

0.0004 7.8 ± 1.2

vs.

8.5 ± 1.3

0.18 1.5 ± 0.3

vs.

1.9 ± 0.3

0.024 13.5 ± 1.9

vs.

10.5 ± 1.5

< 0.0001

FLAIR vs. trueDIR 19.9 ± 2.0

vs.

23.3 ± 2.4

< 0.0001 10.5 ± 1.0

vs.

12.2 ± 1.2

0.0014 7.8 ± 1.2

vs.

9.7 ± 1.5

0.0028 1.5 ± 0.3

vs.

1.5 ± 0.3

0.99 13.5 ± 1.9

vs.

10.5 ± 1.6

< 0.0001

SynthDIR vs. trueDIR 22.8 ± 2.2

vs.

23.3 ± 2.4

0.98 12.4 ± 1.1

vs.

12.2 ± 1.2

0.26 8.5 ± 1.3

vs.

9.7 ± 1.5

0.068 1.9 ± 0.3

vs.

1.5 ± 0.3

0.03 10.5 ± 1.5

vs.

10.5 ± 1.6

0.70

PV, periventricular; JC, juxtacortical; IT, infratentorial; SC, subcortical; FLAIR, fluid-attenuated inversion recovery; trueDIR, real double inversion recovery; synthDIR,

synthetic double inversion recovery.

TABLE 3 | Counts of MS-specific lesions for FLAIR, trueDIR, and synthDIR as a function of data source.

All P Internal data P External data P

Reader 1

FLAIR vs. synthDIR 22.5 ± 2.2 vs. 26.7 ± 2.6 < 0.0001 22.2 ± 3.6 vs. 26.6 ± 4.3 0.0029 22.6 ± 2.8 vs. 27.1 ± 3.4 < 0.0001

FLAIR vs. trueDIR 22.5 ± 2.2 vs. 28.6 ± 2.9 < 0.0001 22.2 ± 3.6 vs. 27.9 ± 4.6 0.0001 22.6 ± 2.8 vs. 28.9 ± 3.7 < 0.0001

SynthDIR vs. trueDIR 26.7 ± 2.6 vs. 28.6 ± 2.9 0.0021 26.6 ± 4.3 vs. 27.9 ± 4.6 0.086 27.1 ± 3.4 vs. 28.9 ± 3.7 0.011

Reader 2

FLAIR vs. synthDIR 19.9 ± 2.0 vs. 22.8 ± 2.2 0.0005 16.6 ± 2.6 vs. 18.1 ± 2.6 0.27 21.5 ± 2.6 vs. 25.1 ± 2.9 0.0007

FLAIR vs. trueDIR 19.9 ± 2.0 vs. 23.3 ± 2.4 < 0.0001 16.6 ± 2.6 vs. 18.6 ± 2.7 0.027 21.5 ± 2.6 vs. 25.6 ± 3.3 0.0001

SynthDIR vs. trueDIR 22.8 ± 2.2 vs. 23.3 ± 2.4 0.98 18.1 ± 2.6 vs. 18.6 ± 2.7 0.87 25.1 ± 2.9 vs. 25.6 ± 3.3 0.90

FLAIR, fluid-attenuated inversion recovery; trueDIR, real double inversion recovery; synthDIR, synthetic double inversion recovery.

these maps. Figure 3 provides examples on how uncertainty
maps allow to discern true-positive lesions from false-positive
hyperintensities in synthDIR.

Quantitative Image Analysis
Similarity between trueDIR and synthDIR was highest in internal
data, as shown by an SSIM of 0.967 ± 0.012, closely followed
by external data (3) and (2) with still excellent SSIM-values of
0.950 ± 0.012 and 0.941 ± 0.010, respectively. For synthDIR,
PSNR was highest in internal data at 29.2 ± 1.6 dB and decreased
to 25.6 ± 1.1 dB in external data (3). Table 4 provides detailed
values for quantitative image metrics.

Effects of Lesion-Focused Loss Function
To assess the benefit of the lesion-specific loss function during
image synthesis, LBR were compared between FLAIR, trueDIR,
synthDIR, as well as synthDIR generated by a network iteration
without the lesion-specific loss. Both versions of synthDIR,
irrespective if additional loss was included or not, exceeded input
FLAIR in LBR (data given in Table 4).

Of note, LBR was significantly lower in synthDIR generated by
the version without lesion-focused loss compared to the version
of synthDIR benefiting from lesion-focused loss (2.69 ± 0.66 vs.
2.80 ± 0.67, p < 0.001). While synthDIR achieved a comparable
LBR to trueDIR (2.80 ± 0.67 vs. 2.86 ± 0.65, p = 0.41), this
effect faded if synthDIR was generated without lesion-focused
loss (2.69± 0.66 vs. 2.86± 0.65, p= 0.032) (as shown in Figure 4).

DISCUSSION

Medical imaging has benefited greatly from DL advances that
gave birth to a panoply of systems aimed at tasks ranging
from disease detection to image synthesis and artifact reduction
(Emami et al., 2018; Rajpurkar et al., 2018; Liang et al., 2019).
We here validated a GAN that has been fine-tuned to the
translation of MS-specific white matter lesions while aiming
to remain generalizable to external data. We further explored
the concept of uncertainty maps to illustrate how trustworthy
the network is in image-to-image translation. Such maps can
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TABLE 4 | Image-wise (SSIM) and voxel-wise (PSNR) comparative metrics for synthDIR and trueDIR.

SSIM (trueDIR –

synthDIR)

PSNR (dB) (trueDIR –

synthDIR)

LBR FLAIR LBR trueDIR LBR synthDIR LBR synthDIR w/o

LFL

All 0.954 ± 0.016 27.2 ± 2.2 1.52 ± 0.49 2.86 ± 0.65 2.80 ± 0.67 2.69 ± 0.66

Internal data 0.967 ± 0.012 29.2 ± 1.64 1.45 ± 0.06 2.80 ± 0.33 2.86 ± 0.34 2.68 ± 0.30

External data (2) 0.941 ± 0.010 25.8 ± 1.12 1.65 ± 0.12 3.01 ± 0.41 3.35 ± 0.50 3.31 ± 0.45

External data (3) 0.950 ± 0.012 25.6 ± 1.08 1.46 ± 0.86 2.78 ± 1.00 2.19 ± 0.56 2.07 ± 0.50

LBR are given for FLAIR, trueDIR, synthDIR, as well as for synthDIR generated by a GAN iteration without the lesion-focused loss function (synthDIR w/o LFL). Results are

given for internal data, as well as external data (2) and (3). SSIM, structural similarity index measure; PSNR, peak signal-to-noise ratio; LBR, lesion-to-background ratio;

LFL, lesion-focused loss; trueDIR, real double inversion recovery; synthDIR, synthetic double inversion recovery.

FIGURE 3 | Uncertainty maps provide relevant information regarding the validity of voxel-to-voxel translation; increases in uncertainty are scaled from blue to green.

Circled in red (Patients 1–4) are hyperintensities in synthDIR without correlation in trueDIR and easily recognized as areas of high variance in the corresponding

uncertainty maps, allowing for their identification as artifacts from the synthesis task. On the other hand, true-positive lesions are readily identified as regions with

either no (patient 1 – green circle in synthDIR) or low (patient 4 – green circle in synthDIR) values of uncertainty. Hence, interpretation of synthDIR and

decision-making on the veracity of lesions is facilitated through uncertainty maps.

provide important support to decide on the veracity of findings
in synthetic images and help the radiologist to detect artifacts
resulting from the synthesis task.

Comparison of the network’s performance in internal and
external data showed that significantly more MS-specific
lesions could be found in synthDIR compared to the FLAIR
sequence that was used as input, irrespective of the data

origin. Approximately 20% more MS-specific lesions were thus
depictable in synthDIR, a magnitude of difference that is of
obvious clinical interest, especially in patients with low lesion
counts. While other surrogates of MS activity have been explored,
depiction of new inflammatory plaques is still considered the
hallmark of disease monitoring in MS (Filippi et al., 2001;
Chard et al., 2003; Wattjes et al., 2015). Also, lesion load has
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FIGURE 4 | Lesion-to-background ratios for FLAIR, trueDIR, and synthDIR.

Additionally, LBR was calculated for synthDIR generated by a GAN-iteration

without the lesion-focused loss (synthDIR no LFL). Of note, LBR was

significantly higher in synthDIR compared to synthDIR without LFL, confirming

the hypothesis that domain knowledge can be improved through LFL. While

there was no significant difference in LBR between synthDIR and trueDIR

(p = 0.41), LBR of synthDIR without LFL remained inferior to the LBR of

trueDIR (p = 0.032). LBR, lesion-to-background ratio; LFL, lesion-focused

loss.

been shown to directly correlate with future disability and, if
properly detected and reliably quantified, might therefore prompt
escalation of disease-modifying therapy (Calabrese et al., 2010;
Popescu et al., 2011).

Domain knowledge, i.e., the ability to learn about pathology-
specific image findings, is promising to further augment the
clinical utility of DL tools (Yuan et al., 2019). The improved
lesion translation that our GAN achieved by including a lesion-
focused loss function hints at the potential of domain knowledge
to further customize synthetic imaging. To highlight this, we
showed that LBR in synthDIR was non-inferior to LBR in
trueDIR only if the GAN was complemented by a lesion-
focused loss.

The ability of synthDIR to outperform FLAIR, a sequence still
considered gold-standard in MS imaging, has been shown for
a multi-modal input (T1w, T2w, and FLAIR) in a monocentric
setting (Finck et al., 2020; Bouman et al., 2021). In doing so,
relevant reductions in scan times are feasible as the physical
acquisition of 3D and isotropic DIR may take up to 7 min
(Eichinger et al., 2019). While other methods, such as sparse
sampling, have previously achieved scan time reductions for DIR,

a GAN-based approach might be advantageous as it works on
existing data and thus does not need to be prospectively deployed
(Eichinger et al., 2019). This offers the potential advantage to
augment the diagnostic value of existing studies and, hence, to
render longitudinal follow-up exams more conclusive.

Albeit accurate in their output, neural networks generally
fail to provide insight into the decision-making process, the
so-called “black-box problem.” Rendering this process more
transparent is crucial for the acceptance of said networks and
can, in theory, be achieved by providing methods to interpret
the “black-box,” or by designing models that are inherently more
transparent in their functioning (Rudin, 2019; Arun et al., 2020).
In GANs specifically, one potential bias in trying to match
the (lesion) distribution in the target domain (trueDIR) is that
features (lesions) with no correlation in source data might be
erroneously mapped, a phenomenon commonly referred to as
“hallucination.” To verify lesion veracity we therefore introduced
the concept of uncertainty maps that highlight the voxel-wise
aleatoric variance taking place during image translation. Hence,
the ability to compare hyperintensities in synthDIR to their
respective uncertainty mappings can reduce the risk of false-
positive findings, i.e., misinterpretation of constructed lesions in
the synthetic image data. Figure 3 illustrates how MS lesions can
thus be separated from artifacts according to their voxel-wise
intensity variance. As erroneous mappings remain an intrinsic
limitation of GANs, their future deploymentmight benefit greatly
from the calculation of uncertainty maps that are displayed in
parallel to synthetic images.

A limitation of this approach is that having to reference
synthDIR, along with the uncertainty maps adds complexity
to the longitudinal interpretation of clinical MRI. Furthermore,
comparison of synthDIR and trueDIR via autosegmentation
techniques might have provided more objective lesion counts
in this study. However, as our GAN was designed to provide
synthetic data for clinical use, we opted for manual lesion
counts as this best reflects the clinical reality. Future iterations
of synthDIR might furthermore mitigate the wide disparities
in lesion counts that we noticed especially in SC lesions.
Also, prospective investigations should explore the feasibility
to generate a GAN targeted to create synthDIR while using
even fewer, potentially only one input modality. At last, we
tested for generalizability by including three centers with
differing hardware. Future investigations would benefit from the
inclusion of more centers and readers, as our results demonstrate
equivalence of synthDIR to trueDIR for only one of the two
neuroradiologists.

CONCLUSION

Our findings confirm the use-case and external validity of a
DL tool targeted at improving MRI in patients with MS. Our
study demonstrates both, the utility of lesion-focused learning
to improve domain adaption, as well as the potential benefit of
uncertainty maps to help gain trust in GANs and make informed
medical decisions. Presumably, wider deployment of these tools
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could prove beneficial in MS where treatment decisions are
heavily relying on MRI findings.
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Abstract. Medical image synthesis has attracted increasing attention
because it could generate missing image data, improve diagnosis, and
benefits many downstream tasks. However, so far the developed syn-
thesis model is not adaptive to unseen data distribution that presents
domain shift, limiting its applicability in clinical routine. This work
focuses on exploring domain adaptation (DA) of 3D image-to-image syn-
thesis models. First, we highlight the technical difference in DA between
classification, segmentation, and synthesis models. Second, we present a
novel efficient adaptation approach based on a 2D variational autoen-
coder which approximates 3D distributions. Third, we present empirical
studies on the effect of the amount of adaptation data and the key hyper-
parameters. Our results show that the proposed approach can signifi-
cantly improve the synthesis accuracy on unseen domains in a 3D setting.
The code is publicly available at https://github.com/WinstonHuTiger/
2D_VAE_UDA_for_3D_sythesis.

1 Introduction

Medical image synthesis is drawing increasing attention in medical imaging,
because it could generate missing image data, improving diagnosis and bene-
fits many downstream tasks such as image segmentation [3,5,16]. For example,
missing modality is a common issue in multi-modal neuroimaging, e.g., due to
motion in the acquisition process [2]. However, existing synthesis frameworks
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are mostly developed and evaluated on single-domain data (e.g., images from
the same scanner), with limited consideration of model robustness when testing
on unseen image domains which might be collected from another imaging scanner
or acquisition protocols. Hence, domain adaptation is crucial for the real-world
deployment in clinical routine. In particular, unsupervised domain adaptation
(UDA) is more practical as it does not require additional expensive supervision
to fine-tune the pre-trained model.

It should be noted that UDA of classification [1,11,17] and segmentation
[4,9,10,12,15] models are well explored in recent years. For image segmenta-
tion models, the problem formulation is as follows. Given two different input

domains (i.e., source and target) with data X and its distribution P (X),
Ds = {Xs, P (Xs)}, Dt = {Xt, P (Xt)} and a shared output space Y = {Y }, a pre-
dictive model f(·) which approximates P (Y |X) trained on the source domain
Ds is likely to degrade on the target domain Dt which presents a domain shift.
Among existing works, one of the key ideas is to match the input space for both
domains in the feature space so that the mapping can be invariant to the inputs.
It could be achieved by adversarial training [17] or prior matching [14].

As shown in Fig. 1, in both classification and segmentation tasks, the output
label spaces in source and target domain are shared. For example, a segmentation
model segments the same anatomical structure in both domains. However, in a
synthesis model, the output spaces from source domain Ys and target domain
Yt are most likely different, for example, the outputs images Ys and Yt could be
from different scanners. In the UDA scenario, we only have access to the input of
target domain Xs, thus matching the synthetic output Ŷt to its real distribution
is challenging as there is no observations of the outputs. Importantly, aligning Xt

and Xs does not guarantee that the output would be close to Yt but Ys. Thus,
most existing works in classification and segmentation could not be directly
applied to synthesis model. Generally, we expect the generated output of the
target domain Ŷt to match a reasonable distribution of the target domain. In
this work, we present the problem setting, upper bound and propose an efficient
approach to perform UDA in a 3D setting.

Why 3D-UDA Is Necessary and Challenging? Previous work focusing
on 2D or patch-based adaptation [4,8]. Although these works show promis-
ing results, they are limited to 2D or patch domains which is insufficient for
many applications such as neuroimaging data which requires domain adapta-
tion in a 3D fashion. The 3D image-to-image synthesis model dealing with full-
volume imaging data is heavy-weight compared to patch-based method. How-
ever, extending existing work from 2D to 3D is non-trivial. In addition to model
complexity, another challenge is that the number of 3D volumetric samples is
very limited while 2D slices are more accessible.

Contributions. Our contribution is threefold: (1) We introduce unsupervised
domain adaptation for 3D medical image synthesis and present the technical
difference with existing setup in image classification and segmentation. (2) We
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Fig. 1. Summary of the main differences in domain adaptation between image clas-
sification, segmentation, and synthesis tasks. The output spaces with the same colors
indicate the output spaces have the same distribution. For example, a segmentation
model segments the same anatomical structure in both domains.

propose an efficient 2D variational-autoencoder approach to perform UDA in a
3D manner. (3) We present empirical studies on the effects of the amount of
data needed for adaptation and the effect of key hyper-parameters. Our results
show that the proposed method can significantly improve the synthesis accuracy
on unseen domains.

2 Methodology

Problem Definition. The objective is to adapt an volume-to-volume mapping
Φs: Xs→Ys which is trained on a source domain to a target domain, so that
when testing on input data Xt, the output could match the target distribution:
Let S and T denote the source domain and the target domain, respectively. We
observe N samples S = {(xk

s , y
k
s )}

N
k=1

from S, and M samples T = {xj
t}

M
j=1

from
T. Notably, the samples from the target domain do not contain any output data.

Supervised Domain Adaptation. When there is some target data {Xt, P (Xt)}
available, one could use them to fine-tune the established mapping M and trans-
fer the knowledge from source to target. When increasing the amount of data
for tuning, the upper bound could be setup for unsupervised domain adaptation
in which only the input data from the target domain can be accessible.

Unsupervised Domain Adaptation. In this setting, Xt is available while Yt is not
accessible. Since the goal of a synthesis model is to generate reasonable output.
One straightforward approach is to match the 3D prior distributions of Ŷt and
Ys. Although Ys and Yt are expected to be different, they largely share the
underlying distribution, e.g., images from different scanners may present varied
contrasts but share the same space of anatomical structure. However, directly
modeling 3D distribution with limited data is challenging. As an alternative, we
explore to model the 3D distribution with a 2D spatial variational autoencoder
(s-VAE) which is effective and computationally efficient.
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Fig. 2. The main framework of our proposed 3D-UDA method for cross-modality MR
image synthesis. In the source domain (green), the 3D backbone is trained supervisedly
with aligned image data, translating FLAIR and T2 to T1. A spatial 2D variational
autoencoder is first trained in the source domain using T1 modality. The dimension
of its latent space is n. Then, in the adaptation stage, we compute the KL-divergence
between the prior distribution of the generated volume and the target 3D distribution
learned by a 2D variational autoencoder. (Color figure online)

2D s-VAE for Modeling 3D Distribution. To encode 3D distribution in the
2D VAE’s latent space, we proposed to train the VAE in a volumetric way, i.e.,
instead of training the 2D VAE with slices from different brain volumes, we take
shuffled 2D slices from a whole 3D volume as the input. Thus, the batch size
corresponds to the number of slices in the volume. We nickname such a form of
VAE as spatial VAE (s-VAE). Doing this ensures that the 2D s-VAE learns the
correlation between 2D slices. Since each latent code comes from a specific slice
of a whole 3D brain volume, n latent codes with a certain sequence together can
express the 3D distribution, while a standard 3D VAEs encode the distribution
in their channel dimension. 2D s-VAE can reduce learnable parameters compared
to 3D VAEs. The training of s-VAE is formulated as:

LV AE = DKL(N(0, I)||N(µŶs

, σŶs

)) + ||Ys − Ŷs||2 (1)

Backbone 3D ConvNets for Image Synthesis. One basic component is a
3D ConvNets backbone for image synthesis. With the N paired samples from
the source domain, supervised learning was conducted to establish a mapping
Φs from the input image space Xs to the output space Ys, optimized with an L1
norm loss: Lsyn =

∑N

i=1
||xi

s − xi
t||1.

3D UDA with 2D s-VAE. Once the 3D distribution of the output in source
domain P (Ys) is learned by 2D s-VAE, we could match it with the posterior
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distribution P (Ŷt) given the generated output Ŷt. Kullback-Leibler (KL) diver-
gence is employed to match P (Ŷt) and P (Ys), which can be formulated as

Lada = DKL(P (Ys)||P (Ŷt)) =
∑

P (Ys)log(
P (Ys)

P (Ŷt)
) (2)

However, just optimizing the KL divergence can be problematic since the
mapping from input to output might suffer from catastrophic forgetting. Con-
sequently, we perform supervised training on the source domain while adapting
it to target domain with KL divergence. The whole UDA pipeline is shown in
Fig. 2.

3 Experiments

Datasets and Preprocessing. We use the multi-center BraTS 2019 dataset
[13] to perform cross-modality image-to-image synthesis and investigate domain
adaptation. Specifically, we generate T1 images from the combination of FLAIR
and T2 images. To create source and target domains for UDA, we split it into
two subsets based on the IDs of medical centers. The first subset contains 146
paired multi-modal MR images from CBICA while the second subset consists
of 239 paired MR images from TCIA. In the supervised image-to-image syn-
thesis training process and domain adaptation process, input volumes loaded as
gray scaled image are first cropped from (155, 240, 240) to (144, 192, 192) to
save memory cost. Then three data argumentation methods are applied to the
cropped volumes, including random rotation, random flip and adjusting contrast
and brightness. The contrast level and brightness level are chosen from a uniform
distribution (0.3, 1.5].

In our setting, there are two domain adaptation tasks: CBICA → TCIA;
TCIA → CBICA. Specifically, in the first task, the image synthesis model is
trained in a supervised manner using CBICA and then the model is adapted to
TCIA subset. The second task is the reverse of the adaptation direction.

In the supervised training, all data from the source domain are used; in the
unsupervised domain adaptation stage, we utilize 100 input volumes (FLAIR
and T2) from the target domain without any output volumes (T1). The rest
of volumes from the target domain are then evaluating the performance of all
methods. The details of composition of datasets are summarized in Table 1.

Table 1. The composition of datasets for the settings of three scenarios in two domain
adaptation tasks. (Adapt. = Adaptation)

Methods CBICA → TCIA TCIA → CBICA

Source Target Source Target

Adapt. set Test set Adapt. set Test set

Without DA 146 0 139 146 0 46

UDA 146 100 139 239 100 46

Supervised DA 0 [40, 100] 139 0 [40, 100] 46

6 Lesion-specific, uncertainty-aware, and domain-adaptive image synthesis
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Configuration of the Training Schedule. We use a 3D pix2pix model [7] as
the pipeline to perform cross-modality synthesis. The generator of the pix2pix
model has a large 9 × 9 × 9 receptive field and it has only four down-sampling
stage to reduce computation complexity. FLAIR and T2 volumes are concate-
nated into a two-channel input. For the two domains, we train the 2D s-VAE
model individually using T1 volumes from each of the source domain. A single
volume is re-scaled from (240, 240, 155) dimension to 256 slices with dimension
(256, 256). 2D s-VAE is trained for 300 epoch and the KL divergence loss weight
is set to be 0.001. For the synthesis model, we first train the model using source
dataset in a supervised way. Then, in the UDA process, we train the model for
five epochs. In the first iteration of the UDA process, we perform supervised
training on the source domain with previous hyper-parameters; in the second
iteration, we fine-tune the 3D backbone with the pre-trained 2D s-VAE model.
All models are trained on RTX 3090 with Pytorch 1.10.2. Due to page limit,
details of the backbone synthesis architecture, 2D VAE and 3D VAE are shown
in the Appendix.

Evaluation Protocol. We use structural similarity index (SSIM) [19] and peak
signal-to-noise ratio (PSNR) to evaluate the image quality of the synthesized
images. We further use a pre-trained nnUnet [6] on the BraTS 2020 dataset [13]
to segment the generated images from different methods and report Dice scores.
All the test images are not involved in the UDA process.

Table 2. Comparison of our methods with the lower bound, upper bound, two base-
lines, supervised method without domain shift and real images (only on Dice). The
p-values for: a) ours vs. lower bound, and b) ours vs. 3D-VAE are all smaller than
0.0001, indicating our method outperforms the two methods significantly. We only
report the mean of Dice score due to page limit.

Methods
CBICA →TCIA TCIA → CBICA

SSIM PSNR Dice SSIM PSNR Dice

Without DA (lower bound) 0.837 (± 0.030) 19.999 (± 2.150) 0.793 0.837 (± 0.027) 18.976 (± 3.685) 0.871

Without DA+augmentation 0.845 (± 0.028) 21.525 (± 2.204) 0.774 0.833 (± 0.029) 19.101 (± 3.646) 0.874

3D VAE UDA 0.844 (± 0.026) 21.183 (± 2.252) 0.772 0.832 (± 0.029) 19.278 (± 3.611) 0.874

2D s-VAE UDA (Ours) 0.853 (± 0.024) 22.217 (± 2.253) 0.773 0.846 (± 0.024) 19.591 (± 3.429) 0.874

Supervised DA (n = 10) 0.844 (± 0.024) 24.969 (± 2.634) 0.763 0.851 (± 0.014) 22.509 (± 2.062) 0.864

Supervised DA (n = 40) 0.869 (± 0.026) 24.933 (± 2.828) 0.790 0.852 (± 0.017) 23.811 (± 2.365) 0.866

Supervised DA (n = 100) 0.869 (± 0.026) 24.619 (± 2.953) 0.799 0.865 (± 0.017) 23.877 (± 2.611) 0.870

Upper bound 0.911 (± 0.0263) 25.519 (± 3.630) 0.820 0.896 (± 0.020) 24.656 (± 2.907) 0.867

Real Images - - 0.904 - - 0.936

4 Results

4.1 Comparison of Methods

We first present the lower bound of the synthesis model without DA on the target
domain. Then we present our proposed 2D s-VAE method. We also present
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the upper bound of a supervised DA. Quantitative results are summarized in
Table 2. Moreover, we study the impact of the amount of volumes used in the
UDA process and the impact of different batch sizes in 2D VAE reconstruction
results, showed in Fig. 4.

Lower-Bound and Upper-Bound. The lower-bound of the UDA is pre-
training on source domain and directly testing on the target domain. Notably
basic data argumentation like random rotation rotation, random flipping are
used to prevent models from over-fitting. As we can observe from row 1 of
Table 2, it achieves the worst performance among all the methods. Given avail-
able paired data from the target domain, one could tune the pre-trained model
(same as transfer learning) to adapt the model to the target domain. One could
observe that increasing data from target domain for supervision improves the
performance, from the three rows (‘Supervised DA’) in Table 2. The upper bound
is defined by training and evaluating the method directly on the target domain.
The last second row in Table 2 shows the results of five-fold cross validation on
the target domain.

Heuristic Data Argumentation. Heuristic data argumentation could poten-
tially improve the generalizability [20]. We perform contrast and brightness-
related data augmentation considering that one of the most important domain
shift is the image contrast between different scanners. We observe that it brings
slight improvement in adaptation by comparing row 1 and row 2 in Table 2.

3D VAE vs. 2D s-VAE. As another baseline to be compared with our proposed
efficient 2D s-VAE approach, we trained 3D VAEs using the volumetric data from
the source domains. One could observe that the 3D VAE performs comparably
with the heuristic data argumentation approach. This is partly because there are
limited data to train the 3D VAE for learning a proper underlying distribution.

Our proposed 2D s-VAE method outperforms both data augmentation and
the 3D VAE method on both SSIM and PSNR in two tasks. 3D VAE encoder
is more computationally expensive, since the encoder of 3D VAE has 5.17M
learnable parameters while 2D s-VAE only has 1.73M ones. Although there is
still a visible performance gap between all the UDA methods and the upper
bound, our 2D s-VAE method provides an effective and efficient solution when
the output modality from the target domain is not accessible.

4.2 Analysis of Parameters

Impact of Batch Size on 2D s-VAE: In 2D s-VAE training process and the UDA
process, slices of a whole brain MRI sequence serve as the input. To show the
impact of batch size on 2D s-VAE, we explore the batch size of values, 32, 64,
128 and 256. To understand how much the VAE models the 3D distribution and
visualize the results from the learned prior, we follow [18] to build a Guassian
model of 2D slices, which models the correlation of 2D slices in the latent space
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Fig. 3. Results on example slices achieved by different methods: (a) Without domain
adaptation (DA), (b) 3D VAE, and (c) our 2D s-VAE. The difference map (in heatmap)
is computed by subtracting the ground truth slice and the synthesized slice. We observe
that our approach achieves best perceptual quality.

for sampling infinite number of 2D slices. As we show in Fig. 4(b), when batch
size is 32, almost nothing can be sampled from the learned distribution; when
batch size is 64, only noise can be sampled; when batch size is 128 (at this point
half of the brain slices are used in a batch), brain shape can be visualized in the
samples; when batch size is 256, brain structures are clear in the samples.

Impact of the Amount of Volumes: As we show in Fig. 4(b), we study the impact
of amount of volumes used for the UDA process. We observe that for both
CBICA → TCIA and TCIA → CBICA tasks, when the number of volumes is
less than 70, the performance increases. However, when the number exceeds 70,

32

(a) (b)

…

…

…

…

64

128

256

Fig. 4. (a): the reconstruction results influenced by different batch sizes. Larger batch
size could better capture the 3D distribution. (b): the effect of the amount of volumes
used for UDA from the target domain.
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the performance starts to decrease. That is because the first continuing training
batch in the UDA process contributes more to the results rather than the second
batch. Although the first batch regulates the whole UDA process, it might hurt
the performance in some degree.

5 Discussion

In this work, for the first time, we explore domain adaptation for medical
image-to-image synthesis models. We first explain the difference between the
domain adaptation of synthesis, classification and segmentation models. Then
we introduce our efficient unsupervised domain adaptation method using 2D
s-VAE when the target domain is not accessible. Finally, we show the effec-
tiveness of our 2D s-VAE method and study some factors that influence the
performance of our framework. In our approach, we translate the whole volume
from one domain to another instead of using a patch-based method. Although
whole-volume approaches are able to capture the full spatial information, it
suffers from limited training data issues. As we have shown in Fig. 3, even after
domain adaptation, we observed that the domain gap is challenging to overcome.
Recent disentangled learning that could separate domain-specific and shared fea-
tures effectively might improve the current results. Contrastive learning could
be explored to better capture the representation of the source or target domains
more effectively. Given the above limitations, we still wish our approach provides
a new perspective for robust medical image synthesis for future research.
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7 Imbalance-aware self-supervised radiomics

This chapter has been published as one peer-reviewed conference publication:

[1] H. Li, F.-F. Xue, K. Chaitanya, S. Luo, I. Ezhov, B. Wiestler, J. Zhang, and B. Menze.
“Imbalance-aware self-supervised learning for 3d radiomic representations”. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer.
2021, pp. 36–46

Synopsis: This work develops a novel data-driven radiomics and address the imbalance issue
in self-supervised learning. Technically, a self-supervised representation learning framework is
established to learn high-level features of 3D volumes as a complement to existing radiomics
features. Specifically, a 3D Siamese network is developed to learn image representations in a
self-supervised fashion. More importantly, implicit data imbalance is addressed by exploiting
two unsupervised strategies: a) sample re-weighting, and b) balancing the composition of
training batches. When combining the learned self-supervised feature with traditional radiomics,
significant improvement is shown in brain tumor classification and lung cancer staging tasks
covering MRI and CT imaging modalities.

Contributions of thesis author: algorithm design and implementation, computational
experiments and composition of manuscript.
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Abstract. Radiomics can quantify the properties of regions of interest
in medical image data. Classically, they account for pre-defined statis-
tics of shape, texture, and other low-level image features. Alternatively,
deep learning-based representations are derived from supervised learn-
ing but require expensive annotations and often suffer from overfitting
and data imbalance issues. In this work, we address the challenge of
learning the representation of a 3D medical image for an effective quan-
tification under data imbalance. We propose a self-supervised represen-
tation learning framework to learn high-level features of 3D volumes as a
complement to existing radiomics features. Specifically, we demonstrate
how to learn image representations in a self-supervised fashion using a
3D Siamese network. More importantly, we deal with data imbalance
by exploiting two unsupervised strategies: a) sample re-weighting, and
b) balancing the composition of training batches. When combining the
learned self-supervised feature with traditional radiomics, we show signif-
icant improvement in brain tumor classification and lung cancer staging
tasks covering MRI and CT imaging modalities. Codes are available in
https://github.com/hongweilibran/imbalanced-SSL.
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1 Introduction

Great advances have been achieved in supervised deep learning, reaching expert-
level performance on some considerably challenging applications [11]. However,
supervised methods for image classification commonly require relatively large-
scale datasets with ground-truth labels which is time- and resource-consuming
in the medical field. Radiomics is a translational field aiming to extract objec-
tive and quantitative information from clinical imaging data. While traditional
radiomics methods, that rely on statistics of shape, texture and others [1], are
proven to be generalizable in various tasks and domains, their discriminativeness
is often not guaranteed since they are low-level features which are not specifically
optimized on target datasets.

Self-supervised learning for performing pre-text tasks have been explored in
medical imaging [24,25], that serve as a proxy task to pre-train the deep neu-
ral networks. They learn representations commonly in a supervised manner on
proxy tasks. Such methods depend on heuristics to design pre-text tasks which
could limit the discriminativeness of the learnt representations. In this work, we
investigate self-supervised representation learning which aims to directly learn
the representation of the data without a proxy task.

Recent contrastive learning-based methods [6,15,20] learn informative repre-
sentations without human supervision. However, they often rely on large batches
to train and most of them work for 2D images. To this end, due to the high
dimensionality and limited number of training samples in medical field, apply-
ing contrastive learning-based methods may not be practically feasible in 3D
datasets. Specially, in this study, we identify two main differences required to
adapt self-supervised representation learning for radiomics compared to natural
image domain: i) Medical datasets are often multi-modal and three dimensional.
Thus, learning representation methods in 3D medical imaging would be computa-
tionally expensive. ii) heterogeneous medical datasets are inherently imbalanced,
e.g. distribution disparity of disease phenotypes. Existing methods are built upon
approximately balanced datasets (e.g. CIFAR [18] and ImageNet [10]) and do
not assume the existence of data imbalance. Thus, how to handle data imbalance
problem is yet less explored in the context of self-supervised learning.

Related Work. Radiomic features have drawn considerable attention due to
its predictive power for treatment outcomes and cancer genetics in personalized
medicine [12,23]. Traditional radiomics include shape features, first-, second-,
and higher- order statistics features.

Self-supervised representation learning [3,6,7,13,15,22] have shown steady
improvements with impressive results on multiple natural image tasks, mostly
based on contrastive learning [14]. Contrastive learning aims to attract positive
(or similar) sample pairs and rebuff negative (or disimilar) sample pairs. Pos-
itive sample pairs can be obtained by generating two augmented views of one
sample, and the remaining samples in the batch can be used to construct the
negative samples/pairs for a given positive pair. In practice, contrastive learning
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methods benefit from a large number of negative samples. In medical imaging,
there are some existing work related to contrastive learning [2,17,21]. Chaitanya
et al.’s work [5] is the most relevant to our study, which proposed a represen-
tation learning framework for image segmentation by exploring local and global
similarities and dissimilarities. Though these methods are effective in learning
representations, they require a large batch size and/or negative pairs, which
make them difficult to apply to 3D medical data. Chen et al. [8] demonstrates
that a Siamese network can avoid the above issues on a 2D network. The Siamese
network, which contains two encoders with shared weights, compares two simi-
lar representations of two augmented samples from one sample. Importantly, it
neither uses negative pairs nor a large batch size. Considering these benefits, we
borrow the Siamese structure and extend it to 3D imbalanced medical datasets.

Contributions. Our contribution is threefold: (1) We develop a 3D Siamese
network to learn self-supervised representation which is high-level and discrim-
inative. (2) For the first time, we explore how to tackle the data imbalance
problem in self-supervised learning without using labels and propose two effec-
tive unsupervised strategies. (3) We demonstrate that self-supervised represen-
tations can complement the existing radiomics and the combination of them
outperforms supervised learning in two applications.

2 Methodology

The problem of interest is how to learn high-level, discriminative representa-
tions on 3D imbalanced medical image datasets in a self-supervised manner.
The schematic view of the framework is illustrated in Fig. 1. First, a pre-trained
3D encoder network, denoted as Ea, takes a batch of original images X with
batch size N as input and outputs N representation vectors. The details of the
3D encoder is shown in Table 4 of the Supplementary. The features are fed into
the RE/SE module to estimate their individual weights or to resample the batch.

Then each image x in the batch X is randomly augmented into two images
(or called an image pair). They are processed and compared by a 3D Siamese
network, nicknamed 3DSiam, which enjoys relatively low memory without rely-
ing on large training batch of 3D data. The proposed 3DSiam extends original
2D Siamese network [8] from processing 2D images to 3D volumes while inherits
its advantages. Since medical datasets are inherently imbalanced, by intuition
sole 3DSiam would probably suffer from imbalanced data distribution. In the
following, we first introduce RE/SE module to mitigate this issue.

RE/SE Module to Handle Imbalance. Since there is no prior knowledge
on the data distribution available, the way to handle imbalance must be unsu-
pervised. The vectors mentioned above are fed into a RE/SE module before
training the 3DSiam network. The k -means algorithm is used first to cluster the
representation vectors into k centers. We then proposed two simple yet effective
strategies: a) sample re-weighting (RE), and b) sample selection (SE):
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Fig. 1. Our proposed framework learns invariance from extensive 3D image augmen-
tation within four categories: I) affine transform, II) appearance enhancement, III)
contrast change, and IV) adding random noise. First, an image batch X is fed into an
initialized 3D encoder to obtain its representation F. The RE/SE module first estimates
its distribution by k-means based clustering and uses two strategies including sample
re-weighting (RE) or sample selection (SE) to alleviate data imbalance issue. Each
image is randomly augmented into two positive samples {X1, X2} which are then used
to train a 3D Siamese network by comparing their representations from two encoders
{Ea, Ef} with shared weights. p is a two-layer perceptron to transform the feature.

a) Sample re-weighting (RE). Denote a batch with N samples as X = {xi|i =
1, 2, ..., N}. Given k clusters, denote the distribution of k clusters of features
as F = {fj |j = 1, 2, ..., k} over N samples. fj denotes the frequency of cluster
j. Then we assign different weights to the samples in each cluster j. For each
sample xi, representation vector of which belongs to cluster j, we assign it
a weight of N/fj to penalize the imbalanced distribution during the batch
training. In practice, we further normalize it by re-scaling to guarantee the
minimum weight is 1 for each input batch.

b) Sample selection (SE). Denoting the clusters’ centroids as C = {c1, c2, ...ck},
we find the maximum Euclidean distance maxi,j∈[1,k],i �=jd(ci, cj) among all
pairs of centroids. k is a hyper-parameter here. We hypothesize that the
clusters with maximum centroid distance are representation vectors from
different groups. To select m samples from the original N samples to form
a new batch, denoted by Bc = {x1, x2, ..., xm}, we sample m

2 nearest sample
points centered on each of the selected maximum-distance centroids. m is
set to be smaller than N

k
for low computation complexity and efficient sam-

pling. The selected new batch is then used to train our 3DSiam network. A
motivation behind the selection strategy is outlined in Supplementary.
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3D Siamese Network. The 3DSiam takes as input two randomly augmented
views x1 and x2 from a sample x. The two views are processed by two 3D
encoder networks with shared weights. One of the encoder has frozen weights
when training (denoted as Ef ) and the other one is with active weights (denoted
as Ea). Before training, Ef is always updated to the weights of Ea. Ea is followed
by a two-layer perceptron called predictor to transform the features. The final
objective is to optimize a matching score between the two similar representations
t1 � p (Ea(x1)) and r2 � Ef (x2). 3DSiam minimizes their negative cosine
similarity, which is formulated as:

S (t1, r2) = −
t1

‖t1‖2

·
r2

‖r2‖2

, (1)

where ‖ · ‖2 is L2-norm. Following [6], we define a symmetrized loss to train the
two encoders, formulated as:

L =
1

2
S (t1, r2) +

1

2
S (t2, r1) , (2)

where t2 � p (Ef (x2)), r1 � Ef (x1). This loss is defined and computed for each
sample with re-weighting in the batch X or the new batch Bc with equal weights.
Notably the encoder Ef on x2 receives no gradient from r2 in the first term of
Eq. (2), but it receives gradients from t2 in the second term (and vice versa for
x1). This training strategy avoids collapsing solutions, i.e., t1 and r2 outputs a
constant over the training process. When training is finished, r2 is used as the
final representation.

3 Experiments

Datasets and Preprocessing. The evaluation of our approach is performed
on two public datasets: 1) a multi-center MRI dataset (BraTS ) [4,19] including
326 patients with brain tumor. The MRI modalities include FLAIR, T1, T2
and T1-c with a uniform voxel size 1× 1 × 1 mm3. Only FLAIR is used in our
experiment for simplicity of comparisons. 2) a lung CT dataset with 420 non-
small cell lung cancer patients (NSCLC-radiomics) [1,9]1. The effectiveness of
the learnt representations is evaluated on two classification tasks (also called
‘down-stream task’): a) discriminating high grade (H-grade) and low grade tumor
(L-grade), and b) predicting lung cancer stages (i.e. I, II or III). The BraTS
dataset is imbalanced in two aspects: a) the distribution of ground truth labels
(H-grade vs. L-grade); b) the distribution of available scans among different
medical centers. For NSCLC-radiomics, the distribution of ground truth labels
are imbalanced as well, with ratio of 2:1:6 for stage I, II and III respectively. For
BraTS, we make use of the segmentation mask to get the centroid and generate
a 3D bounding box of 96× 96 × 96 to localize the tumour. If the bounding box
exceeds the original volume, the out-of-box region was padded with background

1 Two patients were excluded as the ground truth labels are not available.
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intensity. For NSCLC-radiomics, we get the lung mask by a recent public lung
segmentation tool [16], and then generate a 224× 224 × 224 bounding box to
localize the lung. The lung volume was then resized to 112 × 112 × 112 due to
memory constraint. The intensity range of all image volumes was rescaled to [0,
255] to guarantee the success of intensity-based image transformations.

Configuration of the Training Schedule. We build a 3D convolutional neu-
ral network with two bottleneck blocks as the encoder for all experiments (details
in Supplementary). In the beginning, we pre-train 3DSiam for one epoch with a
batch size of 6. Then we use it to extract features for the RE/SE module. After
first epoch, the encoder from the last iteration is employed for dynamic feature
extraction. For down-stream task evaluations, we use the last-layer feature of the
encoder. For 3D data augmentation, we apply four categories shown in Fig. 1,
including random rotations in [−20, 20] degrees, random scale between [0.7, 1.3],
and random shift between [−0.05, 0.05], Gamma contrast adjustment between
[0.7, 1.5], image sharpening, and Gaussian blurring, considering the special trait
of medical images. For optimization, we use Adam with 10−2 learning rate and
10−4 weight decay. Each experiment is conducted using one Nvidia RTX 6000
GPU with 24 GB memory. The number of cluster k is set to 3 in all experiments.
Its effect is analyzed in the last section.

Computation Complexity. For 3DSiam without RE/SE module, the training
takes only around four hours for 50 epochs for the results reported for brain
tumor classification task. We do not observe significant improvement when
increasing the number of epochs after 50. We train 3DSiam with RE/SE mod-
ule for around 2000 iterations (not epochs) to guarantee that similar number of
training images for the models of comparison are involved. In RE/SE module,
the main computation cost is from k -means algorithm. We have observed that
the overall computation time has increased by 20% (with i5-5800K CPU). It is
worth noting that RE/SE module is not required during the inference stage,
thus there is no increase of the computational cost in testing.

Feature Extraction and Aggregation. For each volume, we extract a set
of 107 traditional radiomics features2 including first- and second-order statis-
tics, shape-based features and gray level co-occurrence matrix, denoted as ftrad.
For the self-supervised learning one, we extract 256 features from the last fully
connected layer of the encoder Ea, denoted as fSSL. To directly evaluate the
effectiveness of SSL-based features, we concatenate them to a new feature vector
f = [ftrad, fSSL]. Note that ftrad and fSSL are always from the same subjects.

Evaluation Protocol, Classifier and Metrics. For evaluation, we follow
the common protocol to evaluate the quality of the pre-trained representations
by training a supervised linear support vector machine (SVM) classifier on the

2 https://github.com/Radiomics/pyradiomics.
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training set, and then evaluating it on the test set. For binary classification
task (BraTS), we use the sensitivity and specificity as the evaluation metrics.
For multi-class classification task (lung cancer staging), we report the overall
accuracy and minor-class (i.e. stage II) accuracy considering all testing samples.
We use stratified five-fold cross validation to reduce selection bias and validate
each model. In each fold, we randomly sample 80% subjects from each class as
the training set, and the remaining 20% for each class as the test set. Within
each fold, we employ 20% of training data to optimize the hyper-parameters.

4 Results

Quantitative Comparison. We evaluate the effectiveness of the proposed self-
supervised radiomics features on two classification tasks: a) discrimination of low
grade and high grade of brain tumor and b) staging of lung cancer.

Table 1. Comparison of the performances of different kinds of features in two down-
stream tasks using stratified cross-validation. We further reduce 50% training data
in each fold of validation to show the effectiveness against supervised learning. Our
method outperforms supervised learning in both scenarios.

Methods BraTS Lung cancer staging

Sensitivity/Specificity Overall/Minor-class accuracy

Full labels 50% labels Full labels 50% labels

Trad. radiomics 0.888/0.697 0.848/0.697 0.490/0.375 0.481/0.325

Rubik’s cube [25] 0.744/0.526 0.680/0.486 0.459/0.325 0.433/0.275

3DSiam 0.844/0.407 0.808/0.526 0.459/0.300 0.445/0.300

3DSiam+SE 0.848/0.513 0.824/0.566 0.471/0.350 0.443/0.325

3DSiam+RE 0.868/0.486 0.828/0.605 0.459/0.375 0.445/0.325

Trad.+3DSiam 0.904/0.645 0.804/0.566 0.495/0.350 0.486/0.350

Trad.+3DSiam+SE 0.916/0.711 0.848/0.763 0.538/0.375 0.519/0.350

Trad.+3DSiam+RE 0.920/0.711 0.804/0.763 0.524/0.425 0.502/0.40

Supervised learning 0.888/0.711 0.804/0.566 0.526/0.375 0.467/0.325

Effectiveness of RE/SE Module. From the first row of Table 1, one can observe
that traditional radiomics itself brings powerful features to quantify tumor char-
acteristics. On BraTS dataset, the comparison between traditional radiomics
and vanilla self-supervised radiomics (3DSiam) confirms our hypothesis that
features learned by vanilla self-supervised method behave poorly, especially on
the minor class (poor specificity). However, self-supervised radiomics with RE or
SE module surpasses 3DSiam in specificity by a large margin. The aggregation
of the vanilla self-supervised representation and traditional radiomics does not
show significant improvement. More importantly, with RE/SE module added,
the specificity increased by 6.6%, from 64.5% to 71.1%, which indicates a large
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boost in predicting the minor class (i.e. L-grade). Both comparisons of rows 4, 5,
6 and rows 7, 8, 9 demonstrate the success of our RE/SE module in tacking class
imbalance, i.e., promoting the recognition of the minor class, while preserving
the accuracy of the major class.

Comparison with State-of-the-Art. Our method (Trad.+3DSiam+SE in Table 2)
outperforms the supervised one in two scenarios in two classification tasks, the
result of which is achieved by using the same encoder backbone with a weighted
cross-entropy loss. When it is trained with 50% less labels, the performance
of supervised model decrease drastically. On lung cancer staging with three
classes, although the overall accuracy of self-supervised radiomics is lower than
the traditional one, with the RE/SE module, the combination of two kinds of
radiomics achieves the topmost overall accuracy. This demonstrates the proposed
self-supervised radiomics is complementary to existing radiomics. In the second
row, we show the result of one self-supervised learning method trained by play-
ing Rubik cubes [25] to learn contextual information with a same encoder. We
observe that the representation learned in proxy task is less discriminative than
the one directly from representation learning.

Fig. 2. Covariance analysis of the representations before and after the SE module.
Across all 326 tumor patients, each feature was correlated with other ones, thereby
generating the correlation coefficients. The density map show that the vanilla repre-
sentation before SE module are more correlated (redundant) than the one after.
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Analysis of Representations and Hyperparameters

Feature Covariance. For a better understanding of the role of the pro-
posed module in relieving data imbalance problem, we further analyze
the feature covariance to understand the role of the SE module. Con-
sider two paired variables (xi, xj) in the representation R. Given n sam-
ples {(xi1, xj1), (xi2, xj2), ..., (xin, xjn)}, Pearson’s correlation coefficient rxixj

is

defined as: rxixj
=

cov(xi,xj)
σxi

σxj

, where cov is the covariance and σ is the standard

deviation. We found that the features after SE module become more compact
as shown in Fig. 2 and more discriminative compared to the features without SE
module.

Effect of the Number of Clusters k. The hyper-parameter k in the SE module
is the number of clusters, which plays a vital role in constructing new batch. To
evaluate its effect, we use different k to train 3DSiam and evaluate it through
classification task. To fairly compare different values of k, we keep the size m of
the new batch Bc fixed to 6 which is also the batch size when k = 0 (without
SE module). The initial batch size N is set to k × q where q is empirically set
to 10 in the comparison. The AUC achieves the highest when k = 3. With
k = 5, the AUC drops. This is probably because when k becomes large, the
sampling may be biased when only considering a pair of clustering centers. For
details, please refer to the curves of AUC over the number of clusters in Table 3
in Supplementary.

5 Conclusion

In this work, we proposed a 3D self-supervised representation framework for
medical image analysis. It allows us to learn effective 3D representations in
a self-supervised manner while considering the imbalanced nature of medical
datasets. We have demonstrated that data-driven self-supervised representation
could enhance the predictive power of radiomics learned from large-scale datasets
without annotations and could serve as an effective compliment to the existing
radiomics features for medical image analysis. Dealing with imbalance is an
important topic and we will explore other strategies in the future.
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8 Concluding remarks

The increasingly large-scale neuroimaging datasets enable data-driven modeling of domain
knowledge. This modeling opens new avenues to improve the diagnosis of neurological diseases
by mining non-invasive and reliable biomarkers from advanced MR imaging tools. Although deep
learning has enabled substantial leaps in performance in many neuroimage analysis tasks, its
deployment in clinics and laboratories remains challenging. A combination of labeling scarcity,
missing data, and domain shift between image datasets creates a high adoption barrier and
causes underwhelming performance in real-world settings.

This dissertation contributes and validates novel deep learning methods in three neuroimage
analysis tasks: (a) image segmentation, (b) image synthesis, and (c) radiomics analysis. These
approaches effectively and efficiently process neuroimage data, acknowledge the imperfection of
datasets, and compel models to adapt to unseen domains. Due to the publication-based nature
of this thesis, Chapter 3 to 7 are self-contained and in their original form. This final chapter,
therefore, provides a summary and a more general discussion of the work, including directions
for future research.

8.1 Conclusion

In Chapter 3, we developed effective deep-learning and ensemble model-based methods for
brain structure segmentation. Specifically, we established a state-of-the-art algorithm for white
matter hyperintensities segmentation in FLAIR and T1 scans, which won a grand segmentation
challenge at MICCAI 2017. The ensemble of individual single deep neural nets significantly boosts
segmentation performance on multi-center MRI scans, especially in improving the segmentation of
small lesions. We further developed the methodology for claustrum segmentation in T1-weighted
scans by aggregating multi-view information, thus improving segmentation accuracy. Both
segmentation methods reach expert-level performance, are evaluated cross-center, and have
potential in real-world clinical practice.

In Chapter 4, we explored efficient deep learning to reduce manual annotation efforts for image
segmentation tasks. Specifically, we transferred knowledge from adult claustrum segmentation
in T1-w MR scans to neonate claustrum segmentation in T2-w ones. We demonstrated the
effectiveness of the transfer learning technique compared to non-transfer learning approaches.
We found that the model could achieve satisfactory segmentation with only 12 annotated scans.
Finally, we verified the model’s applicability on 528 scans from the DHCP project and revealed
reliable segmentations in 97.4

For image synthesis, in Chapter 5, we developed DiamondGAN, a unified synthesis framework
for multi-contrast MR image synthesis based on generative adversarial networks, and validated it
in a clinical setting. Firstly, we developed a unified cross-modality synthesis approach based on
generative adversarial networks that can perform arbitrary missing contrast synthesis. Secondly,
we applied the developed method to generate synthetic double inversion recovery images and
compared their diagnostic performance to conventional sequences in patients with multiple
sclerosis (MS). We observed that the generated DIR images improve lesion depiction compared
to standard FLAIR and T1 modalities, indicating that we augment the image information from

almost-invisible to visible.

In Chapter 6, we developed a lesion-specific, uncertainty-aware, and domain-adaptive neuroim-
age synthesis framework. Firstly, we proposed a new loss function to enhance the image quality
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8 Concluding remarks

of lesion regions and provide uncertainty estimation. We validated it in a multi-center setting and
demonstrated its effectiveness in MS lesion detection compared to the FLAIR modality. Secondly,
we explored unsupervised domain adaptation for generative adversarial networks. Importantly,
this work highlights the technical differences among the adaptation of image classification, image
segmentation, and image synthesis tasks. We developed an efficient domain adaptation approach
for 3D image synthesis based on a 2D variational auto-encoder.

Lastly, in Chapter 7, we developed a novel data-driven radiomics approach and addressed
the imbalance issue in self-supervised learning. Technically, we established a self-supervised
representation learning framework to learn high-level features of 3D volumes to complement
existing radiomics features. Specifically, we developed a 3D Siamese network to learn image
representations in a self-supervised fashion. More importantly, we addressed an implicit data
imbalance issue by exploiting two unsupervised strategies: a) sample re-weighting and b) balancing
the composition of training batches. When combining the learned self-supervised feature with
traditional radiomics, we observed significant improvement in brain tumor classification and lung
cancer staging tasks covering MRI and CT imaging modalities.

8.2 Outlook

In the following sections, we discuss some relevant research topics that could extend the scope of
this dissertation.

8.2.1 Segmentation: adaptation, generalization, and deployment

As mentioned in Section 1.2.2, the key difference between domain adaptation and domain
generalization lies in whether the model has access to data from the target domain. When
data from the target domain is available (either labeled or unlabeled), it becomes possible to
learn and obtain characteristics of the target domain to close the domain gap. Supervised
domain adaptation (e.g., fine-tuning with labeled data), often akin to transfer learning, has
successfully reduced the domain gap with a small set of labeled data, as shown in this dissertation
[170] and other works [176]. Unsupervised domain adaptation can be challenging and is not
always successful, as observed in WMH segmentation [177]. In the unpublished work [177], we
developed an adversarial learning-based approach to match the source and target image domains
for cross-scanner segmentation. We observed that it does not universally work for diverse
image acquisitions in the WMH segmentation task. This may be because existing unsupervised
domain adaptation techniques (e.g., image-based or feature-based) are application-dependent
or shift-dependent. Future research should focus more on understanding domain shift in image
space and its impact on network learning.

In a clinical setting, ideally, a user would want a segmentation model to be robust or out-of-box.
One example is Synseg [178, 179], a contrast-agnostic segmentation model for MR images. As
honestly mentioned by the authors, it does not perform well in pathological cases when the
model is trained on healthy subjects. Notably, domain shift in a wider setting includes not only
contrast variation but also other aspects such as anatomical shift (healthy vs. pathological). It is
important to note that there is no universal method for settings beyond our assumptions.

When segmentation models fail in deployment, failure analysis [180] can help understand
failure behaviors retrospectively and make it possible to treat the model by identifying poison (or
out-of-distribution) data and attacks in the training set [181]. This step would further improve
segmentation robustness in subsequent deployments.

8.2.2 X-to-image synthesis

As demonstrated, image-to-image synthesis successfully augments neuroimages from almost-
invisible to visible in this dissertation. Some recent alternatives include diffusion models [182,
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183] and normalizing flows [184], which are promising for generating high-quality images.
Text-to-image synthesis [185] could be an interesting and promising direction in medical

imaging. DALLE-2 1 is a recent large-scale text-to-image model for this task. Figure 8.1 shows
an example generated by DALLE-2 with the input caption - ‘A high-resolution axial x-ray slice
with brain tumor’. Notably, DALLE-2 is not trained specifically on medical datasets. Why can
text-to-image be clinically relevant? From a technical perspective, one straightforward reason
is data augmentation and manipulation, e.g., generating tailored samples given some rare but
reasonable combinations of text. This could be particularly useful in applications where clinical
reports are structured, such as pathology. From a non-professional viewpoint, text is a domain
where clinical diagnoses and decisions are recorded based on findings in images and other sources.
Hence, building a bridge between text and image might enhance disease understanding and
further democratize medical imaging.

Figure 8.1: ‘A high-resolution axial x-ray slice with brain tumor’, generated by DALLE-2.

It can be argued that the representation of an image should be as compact as possible, i.e.,
the representation should encode key features essential for unknown downstream tasks. While
existing works address long-tailed classification problems in self-supervised settings [186, 187],
discussions on tackling imbalance issues are generally limited to a single image domain with
a uniform distribution. For instance, consider a scenario where the self-supervised model is
trained with a set of one million MR images and 100 CT images. The question arises: How many
CT characteristics can the representation capture compared to the one trained exclusively on
100 CT images? Or would it be ‘overwhelmed’ by the attributes of MR images? Since current
self-supervised learning frameworks are purely data-driven without any regularization, this might
become a significant issue if the goal is for the representation to capture the characteristics of
tailed samples in a self-supervised setting.

A key question here is whether there is a benefit to mixing multiple image domains in
a self-supervised setting. In medical imaging, the answer could be ‘yes’ and possibly ‘no’.
The rationale for ‘yes’ is the prevailing belief that more training data leads to more effective
representations. However, considering MRI as an example, when data from different acquisition
settings and medical centers are mixed, it is unclear whether the intra-domain differences (e.g.,
images from different scanners) would be more pronounced than inter-domain differences (e.g.,
images from different subtypes) in the learned representations. How can we ensure that self-
supervised representations trained on long-tailed datasets remain equally discriminative for
different downstream tasks? This aspect seems yet to be explored in medical imaging.

1https://openai.com/dall-e-2/
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E. Ramon, M. Desco Menéndez, A. Santos, and M. J. Ledesma Carbayo. “Optimal
multiresolution 3D level-set method for liver segmentation incorporating local curvature
constraints”. In: (2011).

[33] H. Wang, J. W. Suh, S. R. Das, J. B. Pluta, C. Craige, and P. A. Yushkevich. “Multi-atlas
segmentation with joint label fusion”. In: IEEE transactions on pattern analysis and
machine intelligence 35.3 (2013), pp. 611–623.

[34] L. M. Koch, M. Rajchl, W. Bai, C. F. Baumgartner, T. Tong, J. Passerat-Palmbach,
P. Aljabar, and D. Rueckert. “Multi-atlas segmentation using partially annotated data:
methods and annotation strategies”. In: IEEE transactions on pattern analysis and
machine intelligence 40.7 (2017), pp. 1683–1696.

[35] L. Massoptier and S. Casciaro. “A new fully automatic and robust algorithm for fast
segmentation of liver tissue and tumors from CT scans”. In: European radiology 18.8
(2008), p. 1658.

[36] H. Frigui and R. Krishnapuram. “A robust competitive clustering algorithm with ap-
plications in computer vision”. In: Ieee transactions on pattern analysis and machine
intelligence 21.5 (1999), pp. 450–465.
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[154] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. “3D U-Net:
learning dense volumetric segmentation from sparse annotation”. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention. Springer. 2016,
pp. 424–432.

[155] G. Lin, A. Milan, C. Shen, and I. Reid. “Refinenet: Multi-path refinement networks
for high-resolution semantic segmentation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 1925–1934.

[156] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng. “H-DenseUNet: hybrid
densely connected UNet for liver and tumor segmentation from CT volumes”. In: IEEE
transactions on medical imaging 37.12 (2018), pp. 2663–2674.

[157] S. Guan, A. A. Khan, S. Sikdar, and P. V. Chitnis. “Fully Dense UNet for 2-D Sparse
Photoacoustic Tomography Artifact Removal”. In: IEEE journal of biomedical and health
informatics 24.2 (2019), pp. 568–576.

[158] F. Yu and V. Koltun. “Multi-scale context aggregation by dilated convolutions”. In: arXiv
preprint arXiv:1511.07122 (2015).

142



Bibliography

[159] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. “Deformable convolutional
networks”. In: Proceedings of the IEEE international conference on computer vision. 2017,
pp. 764–773.

[160] R. Zhang, F. Zhu, J. Liu, and G. Liu. “Depth-wise separable convolutions and multi-
level pooling for an efficient spatial CNN-based steganalysis”. In: IEEE Transactions on
Information Forensics and Security 15 (2019), pp. 1138–1150.

[161] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional networks”. In:
European conference on computer vision. Springer. 2014, pp. 818–833.

[162] V. Dumoulin and F. Visin. “A guide to convolution arithmetic for deep learning”. In:
arXiv preprint arXiv:1603.07285 (2016).

[163] S. Jadon. “A survey of loss functions for semantic segmentation”. In: arXiv preprint
arXiv:2006.14822 (2020).

[164] H. Kervadec, J. Bouchtiba, C. Desrosiers, E. Granger, J. Dolz, and I. B. Ayed. “Boundary
loss for highly unbalanced segmentation”. In: International conference on medical imaging
with deep learning. 2019, pp. 285–296.

[165] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. “Generative adversarial networks”. In: Communications of the ACM 63.11
(2020), pp. 139–144.

[166] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio. “Generative Adversarial Nets”. In: NIPS. 2014.

[167] I. Goodfellow. “Nips 2016 tutorial: Generative adversarial networks”. In: arXiv preprint
arXiv:1701.00160 (2016).

[168] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and
R. M. Summers. “Deep convolutional neural networks for computer-aided detection: CNN
architectures, dataset characteristics and transfer learning”. In: IEEE transactions on
medical imaging 35.5 (2016), pp. 1285–1298.

[169] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. “Adversarial discriminative domain
adaptation”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 7167–7176.

[170] A. Neubauer*, H. Li*, J. Wendt, B. Schmitz-Koep, A. Menegaux, D. Schinz, B. Menze,
C. Zimmer, C. Sorg, and D. M. Hedderich. “Efficient claustrum segmentation in T2-
weighted neonatal brain MRI using transfer learning from adult scans”. In: Clinical

Neuroradiology (2022), pp. 1–12.

[171] H. Li*, J. C. Paetzold*, A. Sekuboyina, F. Kofler, J. Zhang, J. S. Kirschke, B. Wiestler,
and B. Menze. “DiamondGAN: unified multi-modal generative adversarial networks for
MRI sequences synthesis”. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI). Springer. 2019, pp. 795–803.

[172] T. Finck*, H. Li*, L. Grundl, P. Eichinger, M. Bussas, M. Mühlau, B. Menze, and B.
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